Using a mathematical model to evaluate the impact of different PCV schedules: Preliminary results from the West Africa epidemiological scenario

Alessia Melegaro¹, Albert Jan van Hoek², Yoon Choi², Nigel Gay

1) DONDENA Centre, Bocconi University, Milan, Italy
2) Centre for Infections, Health Protection Agency, London, UK
Role of modelling

• Do we need models to design schedules?
Role of modelling

- **Do we need models to design schedules?**

 NO

 Most vaccination schedules were not designed using models
Role of modelling

• Do we need models to design schedules?
 NO
 Most vaccination schedules were not designed using models

• Do we need models to optimise schedules?
 – Modelling provides an additional tool
 – Impossible to try out many schedules in the field
 – Models let you do that
What type of model?

• Dynamic
 – Direct & indirect effects
• Age-structured
 – Fine age-stratification in infants
• Heterogeneity
 – Age-related
 – Country-specific
 – urban/rural, access to health care, etc.
• Quantify uncertainty
 – Univariate
 – Multivariate
 – Likelihood-based
Assessment of each schedule

- **Effectiveness:**
 - Define the model (type, structure, assumptions)
 - Estimate model parameters (data collection and analysis)
 - Assess effectiveness (model simulations)

- **How to compare:**
 - 1 case of IPD in 1yr old in 2011
 - 1 case of HCC in 45yr old in 2055?

- **Cost effectiveness:** Cost per discounted LY/QALY/DALY gained
 - Perspective / time horizon / discount rate
 - Vaccine, programme and healthcare costs
 - C/E threshold, incremental analysis
Pneumococcal challenges

- 90+ serotypes
 - Differ in many ways: virulence, duration of carriage, …
- Multiple carriage
- Competition between serotypes
 - Mechanism?
- Naturally acquired immunity?
 - Serotype-specific or not?
- Changing pre-vaccination baseline

Need to make simplifying assumptions to make progress!
PCV C/E Tools

<table>
<thead>
<tr>
<th></th>
<th>Pneumo ADIP</th>
<th>PAHO TriVac</th>
<th>SUPREMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>10 cohorts</td>
<td>0-4 plus birth cohorts</td>
<td>Entire population</td>
</tr>
<tr>
<td>Vaccination</td>
<td>PCV</td>
<td>PCV, RV, Hib</td>
<td>PCV</td>
</tr>
<tr>
<td>Outcomes</td>
<td>DALY/LY</td>
<td>DALY/LY</td>
<td>DALY/LY</td>
</tr>
<tr>
<td>Time horizon</td>
<td>5 years</td>
<td>5 years</td>
<td>Cross-sectional</td>
</tr>
<tr>
<td>Diseases captured</td>
<td>IPD, non-IPD</td>
<td>IPD, non-IPD</td>
<td>IPD, non-IPD</td>
</tr>
<tr>
<td>Herd immunity</td>
<td>Static</td>
<td>Static</td>
<td>Static</td>
</tr>
<tr>
<td>Serotype replacement</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sensitivity analysis</td>
<td>NA</td>
<td>Univariate</td>
<td>Univariate</td>
</tr>
</tbody>
</table>
PCV C/E Tools

<table>
<thead>
<tr>
<th></th>
<th>Pneumo ADIP</th>
<th>PAHO TriVac</th>
<th>SUPREMES</th>
<th>PCV DYNAMIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>10 cohorts</td>
<td>0-4 plus birth cohorts</td>
<td>Entire population</td>
<td>UNDP population projections</td>
</tr>
<tr>
<td>Vaccination</td>
<td>PCV</td>
<td>PCV, RV, Hib</td>
<td>PCV</td>
<td>PCV (6 others)</td>
</tr>
<tr>
<td>Outcomes</td>
<td>DALY/LY</td>
<td>DALY/LY</td>
<td>DALY/LY</td>
<td>LY (QALY/DALY)</td>
</tr>
<tr>
<td>Time horizon</td>
<td>5 years</td>
<td>5 years</td>
<td>Cross-sectional</td>
<td>5, 10, ..., 50 years</td>
</tr>
<tr>
<td>Diseases captured</td>
<td>IPD, non-IPD</td>
<td>IPD, non-IPD</td>
<td>IPD, non-IPD</td>
<td>IPD, non-IPD</td>
</tr>
<tr>
<td>Herd immunity</td>
<td>Static</td>
<td>Static</td>
<td>Static</td>
<td>DYNAMIC</td>
</tr>
<tr>
<td>Serotype replacement</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>YES</td>
</tr>
<tr>
<td>Sensitivity analysis</td>
<td>NA</td>
<td>Univariate</td>
<td>Univariate</td>
<td>Univariate, Multivariate</td>
</tr>
</tbody>
</table>
Schedule options

- Schedules
 - 1+0 2+0 3+0 2+1 3+1

- Age for primary series
 - 6,10,14w 2,3,4m 2,4,6m

- Age for booster
 - 9m 12m 15m

- Catch-up campaign
 - 1-2y 1-4y and beyond!
Schedule options

- Schedules
 1+0 2+0 3+0 2+1 3+1

- Age for primary series
 6,10,14w 2,3,4m 2,4,6m

- Age for booster
 9m 12m 15m

- Catch-up campaign
 1-2y 1-4y and beyond!
Model

- Originally developed to assess PCV7 in UK
 - Age-structured compartmental dynamic model
- Refined to assess PCV in developing countries
 - Demography, non-IPD
- Applied to W African scenario
 - Burkina Faso (AMP) and the Gambia (MRC)
- Reviewed by QUIVER
- Discussed with PCV experts
- Further model developments and analyses planned
- Present preliminary results
Modelled impact of PCV introduction

VT disease

NVT disease
Effect of catch-up campaign

- **VT (2+1)**
- **VT (2+1) and catch-up (1-4 yrs)**
- **NVT (2+1)**
- **NVT (2+1) and catch-up (1-4 yrs)**
LY gained by schedule

LY gained

Schedule

1+0 2+0 3+0 2+1

0 200000 300000 400000
Uncertainty in effectiveness
Impact of uncertainty in vaccine efficacy parameters

![Graph showing LY gained vs Increasing vaccine efficacy]
Uncertainty in cost-effectiveness
Impact of uncertainty in costs and mortality

Programme costs (in millions) vs. LY gained (in millions)
Next steps

PCV model
• Refine vaccine efficacy parameter set
 – Identify parameter combinations consistent with data from trials and other studies
• Develop full set of epidemiological scenarios for W Africa
 – Uncertainty in disease burden
 – Post-vaccination data from the Gambia
• Develop separate model for epidemic serotypes

Optimising schedules project
• Assess other antigens
• Combine results to assess schedules
Acknowledgements

- Judith Muller, Brad Gessner, AMP
- Grant Mackenzie, MRC Gambia
- Kari Aurenen, KTL Finland
- QUIVER, 5/10/2010
- Pneumococcal experts, 6/10/2010