Adjuvant Development for IPV

Martin Friede Ph.D.
Initiative for Vaccine Research

World Health Organization
Role of adjuvants in vaccine development

- Enable subunit antigens to induce protective immune response
- Achieve protective immunity with reduced number of doses
- Decrease the dose of antigen
- Permit immunisation by alternative routes
- Enhance responses in the young or old
- Increase the speed or duration of the response
Previous studies on adjuvants for IPV

- Water-in-mineral oil emulsions (1954)
 - 'Improved immune response observed' (not quantifiable..)
 - Not pursued since ID delivery adopted at time
 - Presents safety issues (abscess, nodules)
 - Major manufacturing challenges.

- Aluminium salts
 - Enhancement on Neut titers (3-4x) by AlPO4 (1958)
 - AIOH > AlPO4 (later studies: was process optimised ?)
Brief review of adjuvants

- Aluminium salts
- Water-in-oil emulsions
- Oil-in-water emulsions
- TLR-agonists: MPL, CpG, poly-IC, imiquimod etc
- Saponins
- New candidates: eg VEE
Alum

- Aluminium hydroxide, oxy-hydroxide, phosphate, sulphate,..
- Particles with high surface (non-crystalline)
- Binds antigen and provides slow-release at site of injection
- Also acts as immunestimulant via NOD - upregulate MHCII, IL-4
- Can Not be frozen !!
- Cheap, no IP issues
- Manufacture and use can be complicated
o/w emulsions: eg MF59

In a licensed seasonal influenza vaccine (Fluad)
Approved for use in pandemic influenza
In phase 3 pediatric clinical trials (as AS02) for malaria
Off-patent in Europe and most developing countries
Cheap and easy to produce (1-3 c per dose)
Strong dose-reduction effect seen with influenza and HepB

Other forms: AS03, AF3, Covaccine,…
Pandemic Influenza: Addition of MF59 (Novartis) permits dose sparing

<table>
<thead>
<tr>
<th>mg/dose</th>
<th>Plain</th>
<th>+ MF59</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pandemic H9N2 clinical trial: HAI Geometric Mean titers

HAI

 GMT

pre post-1 post-2
AS3 (GSK) permits dose reduction of pandemic influenza vaccine

Seroconversion rate (%) | Seropositivity (%)

<table>
<thead>
<tr>
<th>Seroconversion Rate (%)</th>
<th>Seropositivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-adjuvanted</td>
<td>AS adjuvanted</td>
</tr>
<tr>
<td>3.8 µg</td>
<td>7.5 µg</td>
</tr>
<tr>
<td>60%</td>
<td>80%</td>
</tr>
<tr>
<td>40%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Vaccinated cohort = 50 per group

Leroux-Roels et al. Broad Clade 2 Cross- Reactive Immunity Induced by an Adjuvanted Clade 1 rH5N1 Pandemic Influenza Vaccine. PlosOne, In press 2008
AF3 (Sanofi) permits dose-reduction of pandemic influenza vaccine (H5N1)
TLR agonists

- **MPL (TLR-4 agonist)**
 - In Cervarix (HPV) and Fendrix (HBV) adult
 - In phase 3 in infants (AS01 for malaria)
 - Extensive safety data
 - Non-proprietary forms now available: GLA, sMPLA
 - in phase 1 clinical trials USA
 - Cost may be significant (10c)
 - Benefit over o/w emulsion may only be Th1 response – marginal antibody increase.
Other TLR agonists

- CpG (TLR-9)
 - Dynavax/Merck Heplisav trial: FDA stopped trial.

- Imiquimod.. (TLR 7/8)
 - Only used so far for cutaneous administration. Safety unknown.

- Poly I:C (TLR3)
 - Reproducible manufacture not yet achieved. IPV contains RNA.

- Flagellin (TLR-5), Pal3C (TLR2)
 - Experimental: efficacy, safety, heterogeneity.
Others (examples)

- **Saponins (eg QS21)**
 - Off-patent but currently single GMP supplier (Antigenics): cost!
 - Not yet in approved vaccine (but in pediatric trials: AS01)
 - Proprietary methods to overcome stability/toxicity
 - Good antibody and CMI responses

- **Vit D3**
 - Marginal effect on most antigens

- **Venezuelan Equine Encephalitis (VEE) replicons**
 - Induction of IgA following i.m. administration
 - Very strong adjuvant effect
 - Only preclinical data
 - Is IgA effect real
 - Is regulatory pathway feasible
IVR Proposal for dose-reduction of IPV

- Aluminum salts are safe (used in many pediatric vaccines) but are not known for permitting significant dose-reduction.

- New adjuvants based on TLR agonists are likely to have a lengthy approval process and be costly.

- Oil-in-water emulsions permit >30 fold dose-reduction for influenza vaccines.
 - MF59 patent has been revoked in the EU, no IP protection in much of the world.
 - MF59 is in a licensed vaccine for adults and has been tested in infants (but not babies). Regulatory pathway relatively simple.
 - MF59 type adjuvants will cost cents to produce (COG = 1-2c per dose) and can be easily produced in developing countries.
Studies underway

- Study being conducted at IDRI (Seattle) : APW from WHO
 - Collaborating center for Global Adjuvant Development Initiative

- Rat potency studies to identify dose-reduction potential of IPV with range of adjuvants
 - o/w emulsions: MF59, LCD, SE (+/- co-polymer and span)
 - lead o/w emulsion with TLR-4 agonist (GLA)
 - lead o/w emulsion with stabilising charged excipient
 - Comparison to: QS21, alum, alum-MPL, virosomes, niosomes
 - Adjuvant dose-studies: lead candidate identification

- Determination of neutralising titer at CDC.
Status of IDRI studies

- Contract, animals and protocols approved
- o/w emulsion production processes established and QC tests done
- Supply of tIPV by NVI
- First study with MF59 and SE should have been initiated early Oct but minor delay Starts Nov 3 – serology Dec 1.
Future Development

- Global Adjuvant Development Initiative
 - Establishing Adjuvant R&D center at University of Lausanne
 - Funding requested from Wellcome Trust
 - Collaboration with Swiss Vaccine Research Institute (SVRI)
 - 3 year program on IPV
 - Establishment of validated adjuvant production processes
 - Technology transfer of adjuvant production process to India
 - IPV and pandemic flu
 - Supply of GMP adjuvant for phase 1 IPV clinical study (adult) end 2009
 - Phase 1 Age-de-escalation
 - Phase II 2010-11 ? sIPV ?
Possible scenario for use?

- **Point-of-use mixing**
 - No change to existing IPV manufacture or filling
 - No change to release
 - No requirement for new stability data (beyond 8hrs)

- One dose of IPV diluted into multi-dose vial of adjuvant