Advanced Infection Prevention and Control Training

Prevention of catheter-associated urinary tract infection (CAUTI): student handbook

Introduction
Welcome to the “Prevention of catheter-associated urinary tract infections (CAUTI)” module. This advanced module is part of a broader infection prevention and control (IPC) training package targeting advanced IPC focal points working in low-resource settings. It is designed to support the implementation of the WHO Guidelines on core components of infection prevention and control programmes at the national and acute health care facility level\(^1\) as part of a multifaceted approach to capacity-building.

Target audience
This training module is designed for individuals and teams who are intending to occupy a senior leadership position in IPC at the national, subnational or health facility level. Trainees are expected to possess at least basic experience and competence in IPC. They could include IPC professionals, IPC hospital teams, facility administrators, hospital epidemiologists, microbiologists and other relevant health care professionals, among others. The package complements a basic training package intended for all front-line health care workers.

Learning objectives of the module
The module aims to equip the advanced IPC focal point to:

- explain the problem of CAUTI;
- explain catheter use, occurrence of CAUTI and related risk factors;
- recognize CAUTI and understand management principles;
- explain evidence-based (multimodal) implementation strategies for CAUTI prevention including appropriate catheter insertion, maintenance and removal.

Purpose and content of the student handbook
The module comprises a blend of PowerPoint presentations, videos and group work (including case studies and interactive question-and-answer sessions). The student handbook contains supplementary information to support learning, handouts that will be referred to during the training, reflective reading for homework and group work instructions. Together with the PowerPoint slides it will form a valuable resource for students.

The table below sets out the module’s sessions and lists the associated resources contained within the handbook.

Session 1. The problem of CAUTI
- Handout 1. Key points to note
- Handout 2. My 5 Moments for Hand Hygiene – Focus on caring for a patient with a urinary catheter
- Handout 3. IFIC basic concepts of infection control, Chapter 18: Prevention of catheter-associated urinary tract infections

Session 2. Catheter use, occurrence of CAUTI and related risk factors
- Handout 4. Quiz 1
- Handout 5. Supplementary information related to quiz 1
- Handout 7. Types of catheterization and catheters
- Handout 8. Common microorganisms causing CAUTI

Session 3. Recognizing CAUTI and understanding management principles
- Handout 9. Collecting a catheter specimen of urine from the sampling port

Session 4. Implementing evidence-based (multimodal, quality improvement-informed) strategies for CAUTI prevention during catheter insertion, maintenance and removal
- Handout 10. Four key IPC principles and practices
- Handout 11. Multimodal strategy trigger questions
- Handout 12. Aseptic Non Touch Technique (ANTT) poster
- Handout 13. Two case studies – Kenya and United States of America
- Handout 14. Additional reading list
Advanced Infection Prevention and Control Training

Handout 1. Key points to note

- Avoid urinary catheterization if possible!

- When feasible, use a two-person team to perform insertion.

- Use sterile equipment and aseptic technique during insertion and aftercare/maintenance.

- Review the need for the catheter daily and remove as soon as possible when no longer needed (ideally within 48 hours).

- Hand hygiene is critical (especially moment 2 before an aseptic/clean procedure and moment 3 after blood and body fluid exposure).

- Don’t change the catheter routinely if it is functioning properly.

- Maintain closed drainage.

- Bladder irrigation/washout and use of antiseptics/antimicrobial agents does not prevent CAUTI: do not use!

- Empty drainage bag regularly into a clean receptacle used only on one patient.

- The clean receptacle should be changed daily.
Handout 2. My 5 Moments for Hand Hygiene – Focus on caring for a patient with a urinary catheter

The hand hygiene poster is available to download from: http://www.who.int/infection-prevention/tools/hand-hygiene/workplace_reminders/en/
My 5 Moments for Hand Hygiene
Focus on caring for a patient with a Urinary Catheter

CLEAN YOUR HANDS WHEN HANDLING A URINARY CATHETER AND DRAINAGE SYSTEM

Immediately before any manipulation of the urinary catheter or drainage system that could lead to contamination of the sterile urine, such as:
- 2a. Inserting or applying an indwelling, intermittent straight, or condom catheter; immediately before putting on sterile gloves
- 2b. Accessing the drainage system to collect a urine sample or to empty the drainage bag

WHY? To protect the patient against harmful germs, including the patient’s own, from entering his/her body.

Immediately after any task involving the urinary catheter or drainage system that could lead to urine exposure, such as:
- 3a. Collecting a urine sample
- 3b. Emptying the drainage bag
- 3c. Removing the urinary catheter

WHY? To protect yourself and the health-care environment from harmful patient germs.

CLEAN YOUR HANDS WHEN HANDLING A URINARY CATHETER AND DRAINAGE SYSTEM

5 KEY ADDITIONAL CONSIDERATIONS FOR A PATIENT WITH A URINARY CATHETER

- Make sure that there is an appropriate indication for the indwelling urinary catheter.
- Use a closed urinary drainage system, and keep it closed.
- Insert the catheter aseptically using sterile gloves.
- Assess the patient at least daily to determine whether the catheter is still necessary.
- Patients with indwelling urinary catheters do not need antibiotics (including for asymptomatic bacteriuria), unless they have a documented infection.

World Health Organization
SAVE LIVES
Clean Your Hands
No Action Today
No Cure Tomorrow

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this document. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

WHO acknowledges for their active participation in developing this material the VA Ann Arbor Healthcare System & University of Michigan’s Patient Safety Enhancement Program (www.catheterout.org), Ann Arbor, MI, United States, and Infection Control and Human Factors Laboratories, University Hospital Zürich, Zürich, Switzerland (www.humanlabz.org).
Handout 3. IFIC basic concepts of infection control, Chapter 18: Prevention of catheter-associated urinary tract infections

Chapter 18

Prevention of Catheter-Associated Urinary Tract Infections

Nizam Damani

Key Points

- Urinary catheterisation should be avoided if possible. If needed, then catheter should be reviewed on a daily basis and removed as soon as clinically possible, preferably within 5 days.
- Urinary catheterisation should be performed using sterile equipment and aseptic technique should always be maintained during insertion and aftercare procedures.
- Hands must be properly washed before and after procedure and during daily management.
- Catheters should not be changed routinely as this exposes the patient to increased risk of bladder and urethral trauma.
- Maintain a closed drainage system; open systems should be avoided if at all possible.
- Bladder irrigation or washout and instillation of antiseptics or antimicrobial agents does not prevent catheter-associated urinary tract infection and should not be used.
- The drainage bag should be emptied at least once per nursing session into a clean receptacle used only on one patient.
Introduction

Urinary tract infections (UTI) are the commonest healthcare-associated infections (HAI), accounting for up to 40% of all HAIs. Most involve urinary drainage devices, such as bladder catheters. The risk of a catheterised patient acquiring bacteriuria increases with the duration of catheterisation, the daily rate is 5% so that by 4 weeks almost 100% of patients are bacteriuric. One to four percent of patients with bacteriuria will ultimately develop clinically significant infection, e.g., cystitis, pyelonephritis, and septicaemia.

Therefore, urinary catheters must only be inserted when there are clear medical indications (See Table 18.1). They should be removed as soon as no longer needed. In suitable patients, clean intermittent urinary catheterisation or external condom catheters should be considered, as these have a lower risk of infection. Urinary incontinence is not an indication for urinary catheterisation; use napkins or absorbent pads instead.

Table 18.1. Indications for the use of indwelling urinary catheters

<table>
<thead>
<tr>
<th>Examples of appropriate uses of indwelling catheters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient with acute and/or chronic urinary retention or bladder outlet obstruction</td>
</tr>
<tr>
<td>Maintain a continuous outflow of urine for patients with voiding difficulties (as a result of neurological disorders that cause paralysis or loss of sensation affecting urination)</td>
</tr>
<tr>
<td>Need for accurate measurements of urinary output in critically ill patients</td>
</tr>
<tr>
<td>Perioperative use for selected surgical procedures, e.g., patients undergoing urological surgery or other surgery on contiguous structures of the genitourinary tract</td>
</tr>
<tr>
<td>Anticipated prolonged duration of surgery – catheters inserted for this reason should be removed in theatre recovery unit</td>
</tr>
<tr>
<td>Patients anticipated to receive large-volume infusions or diuretics during surgery or need for intraoperative monitoring of urinary output</td>
</tr>
<tr>
<td>To assist in healing of open sacral or perineal wounds in selected incontinent patients</td>
</tr>
<tr>
<td>Patient requiring prolonged immobilisation, e.g., potentially unstable thoracic or lumbar spine or multiple traumatic injuries such as pelvic fractures</td>
</tr>
<tr>
<td>To improve comfort for end of life care if needed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples of inappropriate uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don’t use indwelling catheters as a substitute for nursing care of the patient or resident with incontinence</td>
</tr>
<tr>
<td>Don’t use as a means of obtaining urine for culture or other diagnostic tests when the patient can voluntarily void</td>
</tr>
<tr>
<td>Don’t use for prolonged postoperative duration without appropriate indications</td>
</tr>
</tbody>
</table>

Pathogenesis

Under normal circumstances urethral flora, which tends to migrate into the bladder, is constantly flushed out during urination. When a catheter is inserted, this flushing mechanism is circumvented and peri- neal and urethral flora can pass up into the bladder in the fluid layer between the outside of the catheter and the urethral mucosa or in the urine in the catheter lumen (i.e., endogenous). Because of this, bladder colonisation is inevitable if catheters are left in place for prolonged periods.

In addition, bladder infection can be caused by bacterial reflux from contaminated urine in the drainage bag. Closed drainage systems reduce onset of infection by limiting access of bacteria to the urine. Hands of personnel may also contaminate the urinary catheter system during insertion or management (i.e., exogenous). See Figure 18.1.

Microbiology

A UTI is usually caused by endogenous microorganisms from the patient’s own bowel. In community-acquired infections, the commonest microorganisms are *E. coli* and *Proteus* spp.
Healthcare-associated UTIs are more resistant to antibiotics. This is because hospitalised patients become colonised with resistant microorganisms, a process encouraged by an increased length of stay and exposure to antibiotics. In communities where indiscriminate antimicrobial use is common, multi-resistant Gram-negative bacteria (e.g., extended spectrum beta-lactamase producers [ESBL] and carbapenem-resistant Enterobacteriaceae [CRE]) are also common colonisers of the human bowel.

E. coli is the most frequent cause of catheter-associated UTI (CAUTI). However, increasingly, CAUTIs are caused by more resistant Gram-negative species, including *Klebsiella* and *Pseudomonas*, as well as resistant *E. coli*. Similarly, ampicillin-resistant *Enterococcus* and vancomycin-resistant *E. faecium* (VRE) are becoming common. With additional antibiotic exposure, infections occur with multiply drug resistant bacteria (e.g., ESBL, CRE, VRE).

Resistant microorganisms may also be acquired by transfer from other patients, most commonly via contaminated staff hands, but sometimes from environmental sources. Urine and urinary catheter systems should be carefully disposed of, bottles and jugs cleaned and disinfected, and hands properly washed and decontaminated during insertion and management.

Definitions and Surveillance

Surveillance of CAUTI can be performed in selected groups of patients, e.g., patients in intensive care units or specific types of surgical patients. A definition for CAUTI may be obtained from the USA Centers for Disease Control and Prevention/National Healthcare Safety Network web site (http://www.cdc.gov/nhsn/) or European Centre for Disease Prevention and Control (http://ecdc.europa.eu/).

Strategies to Prevent Infection

Care bundle approach

Current strategies to prevent CAUTIs are based on the implementation of a ‘care bundle’. A care bundle is a package of interventions that, when implemented together for all patients with urinary catheters, has resulted in substantial and sustained reductions in CAUTIs. The catheter care bundle for the prevention of CAUTIs developed by the USA Institute of Healthcare Improvement and the United Kingdom Department of Health are summarised in Table 18.3 with further strategies to prevent CAUTIs outlined in Table 18.2.
Table 18.2: Prevention of bacterial colonisation/infection of the bladder in patients with indwelling urethral catheters

<table>
<thead>
<tr>
<th>1. EXTERNAL URETHRA MEATUS AND URETHRA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria carried into bladder during insertion of catheter</td>
<td></td>
</tr>
<tr>
<td>- Use aseptic non-touch technique (ANTT) for insertion.</td>
<td></td>
</tr>
<tr>
<td>- Pass catheter when bladder is full (preferably) for wash-out effect.</td>
<td></td>
</tr>
<tr>
<td>- Use bladder ultrasound, if available</td>
<td></td>
</tr>
<tr>
<td>- Before catheterisation, clean the urinary meatus using single-use sterile water/saline or antiseptic solution.</td>
<td></td>
</tr>
<tr>
<td>- Use single-use sterile gel. If 2% lignocaine anaesthetic (single-use sterile) gel is used, then inject gel into urethra and hold it for 3-5 min before inserting catheter.</td>
<td></td>
</tr>
<tr>
<td>- Use sterile items /equipment (sterile catheter, sterile gloves, single-use sterile solution etc.).</td>
<td></td>
</tr>
<tr>
<td>- Use Urinary Catheter Pack (contains sterile items required for insertion of catheter in a</td>
<td></td>
</tr>
<tr>
<td>Ascending colonisation up urethra</td>
<td></td>
</tr>
<tr>
<td>- Keep peri-urethral area clean and dry.</td>
<td></td>
</tr>
<tr>
<td>- Don’t use catheter maintenance solution or ointments.</td>
<td></td>
</tr>
<tr>
<td>- Secure catheter appropriately to prevent movement in urethra.</td>
<td></td>
</tr>
<tr>
<td>- After faecal incontinence, clean perineum as soon as possible.</td>
<td></td>
</tr>
<tr>
<td>- Maintain unobstructed urine flow; ensure that the catheter and drainage bag tubing are free of kinks.</td>
<td></td>
</tr>
<tr>
<td>2. JUNCTION BETWEEN CATHETER AND DRAINAGE TUBE</td>
<td></td>
</tr>
<tr>
<td>- Break in the closed drainage must be avoided unless absolutely necessary.</td>
<td></td>
</tr>
<tr>
<td>- Closed drainage bag should not be disconnected. If a sample of urine is required for bacteriological examination, it should be obtained from a sampling port using aseptic</td>
<td></td>
</tr>
<tr>
<td>3. TAP AT BOTTOM OF COLLECTION BAG</td>
<td></td>
</tr>
<tr>
<td>Reflux from bag into catheter</td>
<td></td>
</tr>
<tr>
<td>- Ensure the drainage bag is never raised above the height of the bladder.</td>
<td></td>
</tr>
<tr>
<td>- Keep the catheter and collecting tube free from kinking.</td>
<td></td>
</tr>
<tr>
<td>- Do not hold the bag upside down when emptying.</td>
<td></td>
</tr>
<tr>
<td>- The drainage bag must never touch the floor.</td>
<td></td>
</tr>
<tr>
<td>Emptying of bag</td>
<td></td>
</tr>
<tr>
<td>- Empty the bag every 8 hours or when 2/3 full.</td>
<td></td>
</tr>
<tr>
<td>- Use a separate disinfected jug to collect urine from each bag; prevent contact of the drainage spigot with the non-sterile collecting jug/container.</td>
<td></td>
</tr>
<tr>
<td>- Don’t instil antiseptic into urinary bag after emptying.</td>
<td></td>
</tr>
<tr>
<td>- Always wash or disinfect physically clean hands with an alcoholic hand rub before and after opening tap.</td>
<td></td>
</tr>
</tbody>
</table>

Staff training

Healthcare personnel performing urinary catheterisation should receive training on correct procedures for insertion and maintenance of urinary catheters based on local written protocols.

Catheter size

Catheters are available in different sizes. The smallest diameter catheter that allows free flow of urine should be used. Larger diameter catheters are more likely to cause unnecessary pressure on the urethral mucosa, leading to trauma and ischaemic necrosis. Urological patients and some other patient groups may require larger sized catheters; these should only be used on the advice of specialists.
Table 18.3. Care bundle to prevent catheter-associated urinary tract infections*

<table>
<thead>
<tr>
<th>Insertion Care Bundle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid unnecessary catheterisation</td>
</tr>
<tr>
<td>Chose catheters of appropriate size</td>
</tr>
<tr>
<td>Use sterile items/equipment</td>
</tr>
<tr>
<td>Insert catheter using strict aseptic non-touch technique</td>
</tr>
<tr>
<td>Use closed drainage system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maintenance Care Bundle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review the need for the catheter on a daily basis and remove catheter promptly when</td>
</tr>
<tr>
<td>no longer necessary</td>
</tr>
<tr>
<td>Use aseptic technique for daily catheter care (e.g., hand hygiene, sterile items/equi</td>
</tr>
<tr>
<td>plement)</td>
</tr>
<tr>
<td>Don’t break the closed drainage system. If urine specimen required, take specimen aseptic</td>
</tr>
<tr>
<td>ally via the sampling port (see Fig. 18.1)</td>
</tr>
</tbody>
</table>

*Adapted with modification from references 6 and 7. Note: The Care Bundle can be adapted or expanded to cover more issues according to local needs.

Antimicrobial coated catheters
Silver alloy catheters may reduce the incidence of asymptomatic bacteriuria in patients on short-term catheterization (2–10 days). There is no evidence that they decrease symptomatic infections and therefore they should not be used routinely. They should not be used for patients with chronic catheters.

Catheter insertion
Urinary catheterisation should always be performed using sterile or high-level disinfected equipment and aseptic technique. To minimise trauma to the urethra and discomfort to the patient, a sterile lubricant or local anaesthetic gel should be used.

Meatal cleansing
Meatal cleansing should be performed regularly to ensure that the meatus is free from encrustations. Cleansing with soap and water is sufficient; application of antimicrobial ointment or disinfectant to the urethral meatus is harmful and should be avoided.

Drainage bag
To help prevent trauma to the urethra, the urinary drainage tubing should be secured to the patient’s thigh with straps and adjusted to a comfortable fit. The catheter drainage bag must always be placed below the level of the bladder to promote good drainage. If a catheter stand is used, the drainage bag and drainage tap must not come in contact with the floor. During patient movement, the drainage tube should be temporarily clamped to prevent back-flow of urine. Do not disconnect the drainage bag unnecessarily; maintain the closed drainage system.

Emptying the drainage bag
The drainage bag should be emptied regularly via the drainage tap at the bottom of the bag (i.e., when 3/4 full or sooner if it fills rapidly). If the bag does not have a tap, it must be replaced when 3/4 full using aseptic technique.

Extreme care must be taken when emptying a drainage bag to prevent cross-infection between patients. Hands must be washed or disinfected with an alcohol-based hand rub and non-sterile/clean disposable gloves should be worn when emptying the bag. Alcohol impregnated swabs should be used to decontaminate the outlet of the drainage tap (inside and outside). After emptying the bag, gloves must be removed and hands must be washed.
When emptying the drainage bag, use a separate container for each patient’s urine and avoid contact between the urinary drainage tap and the container. The urine container must be rinsed and disinfected (preferably in a washer disinfector) after each use, dried, and stored inverted in a clean place before further use.

Bladder irrigation

Bladder irrigation or washout and instillation of antiseptics or antimicrobial agents does not prevent CAUTI and therefore should not be used for this purpose. The use of these agents may damage the bladder mucosa or catheter and promote the development of resistant bacteria which are difficult to treat.

Specimen collection

Samples of urine for bacteriological examination should be obtained from the sampling port using aseptic technique. The sampling port should be disinfected by wiping with a 70% isopropyl alcohol impregnated swab. The sample may then be aspirated using a sterile needle and syringe and transferred into a sterile container.

If the urinary catheter has no sampling port, then the sample can be obtained from the urinary catheter by wiping the tube with 70% isopropyl alcohol. Allow to dry and then aspirate the urine sample using a sterile small bore needle and syringe. Transfer into a sterile urine container and send it to the microbiology laboratory as soon as possible. Never obtain a sample from the drainage bag. In asymptomatic patients, routine bacteriological testing is of no clinical benefit and not recommended.

Use of antimicrobial agents

The routine administration of systemic antibiotics at the time of catheter insertion/removal is not recommended. Routine prophylactic antibiotics while the catheter is in situ must not be used as this does not prevent CAUTI; it leads to resistant bacteria. The antibiotic treatment of CAUTIs in the presence of long-term indwelling catheters may not be successful because the causative bacteria are often embedded in biofilm on the surface of the catheter and protected from the action of antibiotics.

Condom catheters

There may be a place for the use of condom catheters for short-term drainage in cooperative male patients. Frequent changes, e.g., daily, may avoid complications, together with penile care. It should be removed at the first sign of penile irritation or skin breakdown. Condom use for 24 hour periods should also be avoided and other methods, such as napkins or absorbent pads, used at night.

Diagnosing UTI

The diagnosis of a UTI depends on laboratory support. When either 1) a carefully collected midstream specimen is obtained or, 2) the specimen is obtained aseptically by needle aspirate of the proximal drainage tube in a patient with an indwelling catheter, finding \(\geq 10^5 \) bacterial colony forming units (CFU)/ml is diagnostic of UTI. Bacterial concentrations \(>10^2 \) CFU/ml suggest infection if the specimen is obtained aseptically or in women with acute, uncomplicated cystitis.

Although UTIs in non-catheterised patients are usually caused by a single microorganism, in patients with chronic catheters, infections can be polymicrobial. The presence of multiple microorganisms does not necessarily indicate contamination.

Urine must be processed promptly, since even with good technique urine samples may contain small numbers of contaminants. These bacteria can multiply at room temperature (especially in hot climates) and result in falsely high colony counts. If delay is expected, the specimen should be transported to the laboratory in an ice box and refrigerated on arrival. Alternatively, boric acid (1% W/V or 1 g/10 ml of urine) should be added to the urine. Specimens containing boric acid need not be refrigerated.

Where microbiological support is limited, clinical symptoms (e.g., fever, supra-pubic tenderness, frequency, and dysuria) may be useful in diagnosis, principally in non-catheterised patients. The presence of pyuria on either microscopic examination or by dip-stick (leukocyte esterase) is consistent with UTI, however it is not specific. If dip-sticks are available, a positive nitrite reaction in combination with a positive leu-
The kocyte esterase reaction is supportive in a symptomatic patient. In catheterised patients, a positive urine culture or dip-stick is not sufficient for diagnosis of infection. In such patients, fever and leukocytosis or leucopenia are additional diagnostic criteria.

Diagnosis of symptomatic infection can be difficult; you cannot rely on a positive culture result or dipstick as these are usually positive in most patients with a urinary catheter after a few days of insertion. Diagnosing CAUTI is based on clinical assessment as most patients are elderly and may not able to communicate properly. A thorough examination of the patient is required; ruling out other sources of infection is essential before a diagnosis of CAUTI is made. As a guide, most patients with CAUTI may have bladder spasm, suprapubic tenderness, fever (>37.5–38.3 °C), and/or renal angle tenderness. Renal angle tenderness in the absence of any other underlying pathology suggests pyelonephritis.

References

1. The bladder is sterile (circle correct response) True False
2. The urethra is usually sterile in healthy non-catheterized people True False
3. In healthy non-catheterized people urine flow flushes out any invading bacteria True False
4. A urinary catheter is a foreign body True False
5. Reflux of contaminated urine from collecting bag is not an infection risk True False
6. A urinary catheter: (tick all correct responses)
 a. is a foreign body allowing potentially harmful uropathogens to enter the bladder False
 b. disrupts the protective mechanisms against infection – e.g. urine flow True False
 c. causes damage during insertion that exposes the urinary tract to colonization and infection False
 d. can result in incomplete voiding of urine from the bladder because of retention of residual urine due to catheter balloon providing a medium for bacterial growth True False
7. Bacteria can only ascend into the urinary tract on the outside of the catheter (i.e. extraluminal route) – between catheter and ureter epithelial surface True False
8. CAUTI can only be caused via contaminated equipment and/or the hands of health care workers (exogenous infection) True False
CAUTI presents an infection risk.

The bladder is usually sterile. However, when a foreign body such as a urinary catheter is in place, local defences are bypassed and bacteria (i.e. uropathogens) can enter the bladder resulting in infection.

A urinary catheter can result in the following risks:

- disruption of protective mechanisms against infection e.g. urine flow;
- damage during insertion exposing the tract to colonization and infection;
- damage to uroepithelial mucosa exposing binding sites to bacterial adhesins;
- incomplete voiding of urine from the bladder because of retention of residual urine due to catheter balloon providing a media for bacterial growth;
- reflux of contaminated urine from collecting bag.

Routes of entry of uropathogens

Bacteria ascend into the urinary tract via two possible routes: the extraluminal route between the catheter and ureter epithelial surface or the intraluminal route – this can occur during a break in the closed drainage system and/or defective asepsis, such as during specimen collection or if bag disconnected (see Fig. 1).

Infections can be either endogenous (self-infection): typically via meatal, rectal or vaginal colonization or exogenous (cross-infection): via contaminated equipment and/or hands of health care personnel.

Appropriate indications

1. Acute urinary retention without bladder outlet obstruction (e.g. medication-related urinary retention)

2. Acute urinary retention with bladder outlet obstruction due to non-infectious, nontraumatic diagnosis (e.g. exacerbation of benign prostatic hyperplasia). Note: consider urology consultation for catheter type and/or placement for conditions, such as acute prostatitis and urethral trauma.

3. Chronic urinary retention with bladder outlet obstruction. Note: it is unclear whether a Foley catheter is appropriate for chronic urinary retention without bladder outlet obstruction (e.g. neurogenic bladder) when an intermittent straight catheter is feasible and adequate.

4. Severe pressure ulcers or similarly severe wounds of other types that cannot be kept clear of urinary incontinence despite wound care; other urinary management strategies (e.g. barrier creams, absorbent pads, prompted toileting and non-indwelling catheters) should be considered.

5. Urinary incontinence in patients for whom nurses find it difficult to provide skin care despite other urinary management strategies and available resources, such as lift teams and mechanical lift devices – e.g. if turning causes hemodynamic or respiratory instability, strict prolonged immobility (such as in unstable spine or pelvic fractures), strict temporary immobility after a procedure (such as after vascular catheterization) or excess weight (>300 lb) from severe oedema or obesity.

6. Hourly measurement of urine volume required to provide treatment – e.g. for management of hemodynamic instability, hourly titration of fluids, drips (such as vasopressors or inotropes) or life-supportive therapy.

7. Daily measurement of urine volume that is required to provide treatment and cannot be assessed by other volume and urine collection strategies (e.g. acute renal failure work-up, acute intravenous or oral diuretic management, intravenous fluid management in respiratory or heart failure).

8. Single 24-hour urine sample for diagnostic test that cannot be obtained by other urine collection strategies (e.g. urinal, bedside commode, bedpan, external catheter or intermittent straight catheter).

9. To reduce acute, severe pain with movement when other urine management strategies are difficult (e.g. acute unrepaired fracture). Note: consider other urine collection strategies (e.g. urinal, bedside commode, bedpan, external catheter or intermittent straight catheter).

10. Improvement in comfort when urine collection by catheter addresses patient and family goals in a dying patient.
Advanced Infection Prevention and Control Training

11. Management of gross haematuria with blood clots in urine

12. Clinical condition for which an intermittent straight catheter or external catheter would be appropriate but placement by experienced nurse or physician was difficult or for a patient for whom bladder emptying was inadequate with non-indwelling strategies during this admission

Inappropriate uses

1. Urinary incontinence when nurses can turn/provide skin care with available resources, including patients with intact skin, incontinence-associated dermatitis, stage I and II pressure ulcers and closed deep-tissue injury

2. Routine use of Foley catheter in intensive care unit without an appropriate indication

3. Foley placement to reduce risk of falls by minimizing the need to get up to urinate

4. Post-void residual urine volume assessment

5. Random or 24-hour urine sample collection for sterile or nonsterile specimens if possible by other collection strategies (e.g. barrier creams, absorbent pads, prompted toileting or non-indwelling catheters)

6. Patient or family request when no expected difficulties managing urine otherwise in non-dying patient, including during patient transport (for details see reference below)

7. Patient ordered for “bed rest” without strict immobility requirement (e.g. lower-extremity cellulitis)

8. Preventing urinary tract infection in patient with faecal incontinence or diarrhoea or management of frequent, painful urination in patients with urinary tract infection

Handout 7. Types of catheterization and catheters

Three types of catheter are used in health care:

- **indwelling (Foley) catheters** – urethral (most common) or suprapubic (e.g. abdominal stab wound);

- **external catheters (condom catheters/Paul’s tubing)** – typically used for men with serious functional or cognitive impairment, such as dementia – generally more comfortable and carry a lower risk of infection than indwelling catheters;

- **short-term (intermittent) catheters** – for use when a patient may need a catheter for a short period of time after surgery.

Urinary catheters come in different sizes to accommodate adults and paediatrics and the anatomical differences between males and females; e.g. Foley sizes 12–18 French/Fr for adults and 6–8 Fr for paediatrics.

Urinary catheters are also available in different materials including latex, silicone (to minimize biofilm formation; good for latex allergies) and a range of other materials, such as silicone-elastomer, hydrogel coated and antimicrobial coated (silver alloy coating).
Advanced Infection Prevention and Control Training

Handout 8. Common microorganisms causing CAUTI

Distribution of pathogens for CAUTI reported in the United States of America, 2016

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Proportion of pathogens (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>23.9</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>11.7</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>10.3</td>
</tr>
<tr>
<td>Klebsiella (pneumoniae/oxytoca)</td>
<td>10.1</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>7</td>
</tr>
</tbody>
</table>

Most frequently isolated organisms in urinary tract infections in Europe, 2011–2012

![Graph showing proportions of microorganisms](#)

Sources:
Handout 9. Collecting a catheter specimen of urine from the sampling port

The sampling port can be used when it is necessary to test urine when the patient has possible or probable CAUTI; otherwise, sending routine urine sampling for culture is not recommended.

The sample must be collected through the sampling port using aseptic technique (key hand hygiene moments 2 and 3).

- Disinfect port by wiping with a 70% alcohol swab.
- Do not disconnect the closed drainage bag.
- Do not obtain the sample from the drainage bag or send catheter tips for culture.
- If the sampling port is not available, the sample can be aspirated from the connecting tube using a sterile small-bore needle/syringe and transferred into a sterile container (not best practice).

The specimen should be transported to the lab within two hours or refrigerated.

- If a refrigerator is not available, use a dedicated ice box, or add boric acid as a preservative.

Useful resource

Handout 10. Four key IPC principles and practices

Always use a multimodal strategy to guide implementation of CAUTI prevention interventions. The following four principles and practices are critical for CAUTI prevention.

1. **Avoid unnecessary urinary catheters.**

 1.1. Each patient must be assessed for need of a catheter and reasons noted/ticked against the criteria on a checklist (in addition to alerts/reminders, prompts and use of bladder scans).

2. **Insert urinary catheters using aseptic technique** (see Aseptic Non Touch Technique (ANTT) poster, handout 12).

 2.1. Hand hygiene must be observed at the right moments (see handout 2).

 2.2. Proper insertion technique (maintaining sterile field) must be used.

 2.3. A strong supportive system is required, including:

 - catheter insertion pack or appropriate individual sterile supplies (see slide 63: insertion packs for CAUTI);
 - sterile urinary catheter (one extra in case of contamination);
 - urinary catheter bag;
 - two pair of gloves: one clean and one sterile;
 - waterproof drape;
 - saline or sterile antiseptic solution;
 - syringe with sterile water in amount designated by catheter manufacturer;
 - water-soluble sterile lubricant OR anaesthetic gel;
 - sterile cleansing balls and forceps;
 - urine receptacle, sterile specimen container;
 - other: adequate lighting, sheet for draping patient, clean trolley with waste bag attached to it, hand hygiene materials.

 2.4. Support should be provided through use of algorithms, checklists, nurse empowerment, training and competency development, and good documentation.

3. **Maintain urinary catheters based on recommended guidelines.**

 3.1. **Secure catheter** to prevent irritation of the urethra.
Advanced Infection Prevention and Control Training

3.2. Maintain an unobstructed urine flow.

3.3. Maintain a sterile, continuous closed drainage system.

3.4. Maintain the drainage bag below the level of the bladder and off the floor, and empty when indicated.

3.5. Perform hand hygiene, i.e. the five moments specific to catheter care.

3.6. Perform regular meatal hygiene, i.e. once per day, after bowel action.

3.7. Support should also be provided through use of algorithms, checklists, nurse empowerment, training and competency development, and good documentation.

4. Review urinary catheter necessity daily and remove promptly.

4.1. Address the importance of timely removal to reduce CAUTI risk:
 o review urinary catheter necessity daily;
 o record the reason for keeping catheter in situ each day;
 o remove the catheter promptly when no longer needed.

4.2. The review can be supported by reminders/stop orders for removal, nurse empowerment and patient/family communication on the need for catheterization.

4.3. Institutional culture and power dynamics will influence the implementation of this element.
Advanced Infection Prevention and Control Training

Handout 11. Multimodal strategy trigger questions

If you decide to target CAUTI prevention in your facility, the WHO multimodal strategy will support the development of an improvement plan. The first step is to discuss with the IPC team and or committee the current situation to help collect baseline information for action planning – the table below provides some trigger questions to gather information for action.

<table>
<thead>
<tr>
<th>Component</th>
<th>Trigger questions</th>
</tr>
</thead>
</table>
| **1. Build it** (system change) | 1. Can necessary supplies be procured easily, affordably and when needed?
2. Is the infrastructure supportive of CAUTI prevention (e.g. can hand hygiene be performed at the point of care, is there adequate lighting, can patient privacy and dignity needs be met?)
3. Are enough catheters available to ensure single use?
4. Are there enough jugs to ensure decontamination between catheterization? |
| **2. Teach it** (training & education) | 1. Is everyone who catheterizes trained on the four key principles and practices?
2. How is competency assured?
3. Are regular refresher courses/seminars/grand rounds provided?
4. Are policies/guidelines/protocols available/accessible, and consistent with current evidence?
5. Are patients/families taught about measures they can take to prevent CAUTI? |
| **3. Check it** (monitoring & feedback) | 1. Are existing monitoring and feedback (audit) tools available and accessible – e.g. WHO hand hygiene observational audit tools?
2. Have monitoring and feedback tools been developed in your institution?
3. Are checklists available?
4. Are CAUTI surveillance systems in place?
5. Is someone with data analytic skills available to analyse and interpret the data to ensure effective feedback to the right people? |
| **4. Sell it** (reminders & communications) | 1. Are posters available (either commercially or developed in-house to act as reminders or cues to action – e.g. to remind about timely removal?
2. Is technology available to support reminders in the workplace – e.g. text messages?
3. Are bundles used to promote the right practices?
4. Do team meetings/ward rounds routinely address patients with indwelling urinary catheters? |
1. Are there champions on wards who are informed about the four principles and practices and actively promote them, thus providing the message “we take CAUTI seriously here”?
2. Do staff feel empowered to challenge suboptimal practices in a safe way?
3. Do senior clinicians and nurses support and promote the other four parts of the multimodal strategy – e.g. by releasing staff to attend training?
Indwelling urinary catheterization
(Using Surgical-ANTT)

Prep patient
- Apply waterproof pad & gown
- Ask patient to lift gown pre step 9

Clean hands with alcohol gel or soap & water
Clean trolley according to local policy
Gather equipment onto bottom shelf

Apply apron (Re-clean hands if required)
Open catheter pack
Prepare a Critical Aseptic Field (Sterilized drape) & position waste bag
Open equipment onto the Critical Aseptic Field using non-touch technique (NTT)

- Clean hands
- Apply sterilized gloves
Prepare equipment using NTT
Apply aseptic field drapes over genitals & between legs
Clean urethral orifice with normal saline & gauze
Insert sterile lubricating gel
- Dispose gloves
- Clean hands
- Apply sterilized gloves
Insert catheter using NTT by touching only the plastic wrapping

Inflate balloon using NTT
Attach collection bag using NTT
Dispose of waste & gloves then apron and immediately...
Clean hands with soap & water

Clean trolley according to local policy
Clean hands with alcohol hand rub or soap & water

Your Hospital Logo Here
Handout 13. Two case studies – Kenya and United States of America

Case study 1. The multimodal strategy in action – example of CAUTI prevention in Kenya

The setting for the Tillekeratne et al. study is a medical ward of a Kenyan public district hospital in 2012. The CAUTI prevention strategy was based on a multimodal low-cost intervention consisting of:

- training and education, including a lecture series with videos;
- reminders and communications, including reminder signs in the workplace; and
- culture change, including IPC rounds by nurses/matrons.

The catheter utilization ratio decreased from 0.14 to 0.09 (p<0.001) from pre- (eight weeks) to post-intervention (seven weeks). The number of CAUTIs pre-intervention was 13 (for 30.4 infections per 1000 catheter-days). Post-intervention there were zero CAUTIs (p=0.002).

Case study 2. The multimodal strategy in action – example of CAUTI prevention in the United States of America

In this study by Knoll et al., set in the Minneapolis Veterans Administration Medical Center (a tertiary care referral centre in the USA), a bundled intervention was implemented between October 2002 and March 2010. The intervention included multiple types of education, a system redesign to ensure resources were in place, staff rewards, two phases of feedback and the involvement of a dedicated urinary catheter nurse.

From phase one to phase three the mean daily percentages of non-ordered and non-indicated Foley catheter use decreased from 17% to 5.1% and from 15% to 1.2% (p≤0.001), respectively.

Handout 14. Additional reading list

