WORKSHOP ON HEALTH AND ECONOMIC IMPACT OF INFLUENZA

5 JUNE-7 JUNE 2012.
Bali, Indonesia

Prof.JJ.Muyembe,MD,PhD
National Institute for Biomedical Research-INRB-.
Avenue de la Démocratie (ex-Huileries)
DOCUMENTED INFLUENZA OUTBREAKS IN DRC (2002-2005).

- August-Dec 2002: **Bosobolo Health Zone,** Equateur Province:
 - Attack rate: 47.4% (1245/2629)
 - CFR: 1.5% (18/1245)
 - Etiology: A/Moscow/10/99(H3N2).

- Oct 2002-Fev 2003: **Kinshasa,** capital city of DRC.
 - CFR: 2.0% (147/7518)
 - Etiology: A/Moscow/10/99(H3N2)

- May- Jul 2005: **Kahemba Health Zone,** Bandundu Province:
 - Attack rate: 15% (168/1145)
 - CFR: 4%
 - Etiology: Influenza A(H3N2) 18% and RSV (25%).
• Aug-Dec 2009: 290/966 positive for influenza A
 • H1N1pdm: 249
 • H1N1 seasonal
 • H3N2 seasonal
AGE DISTRIBUTION OF PANDEMIC INFLUENZA PATIENTS

Le plus jeune malade avait 4 mois et le plus âgé 79 ans.
SENTINELLE SURVEILLANCE FOR INFLUENZA-LIKE ILLNESS, SEVERE ACUTE RESPIRATORY ILLNESS IN KINSHASA, DRC

Influenza Bali 5-7 JUNE 2012. JJ
MUYEMBE
TYPES AND SUBTYPES OF INFLUENZA IN CASES OF ILI AND SARI IN 5 SENTINEL SITES IN KINSHASA, DRCONGO

Influenza Bali 5-7 JUNE 2012. JJ MUYEMBE

2009 2010 2011

B
Non S/Typable
H3N2
A (H1N1) Seasonal
A (H1N1) Pandemic
AGE DISTRIBUTION OF INFLUENZA VIRUSES IN KINSHASA, DRCONGO

<table>
<thead>
<tr>
<th>Clinical characteristics</th>
<th>ILI 2009 (Jan-Dec)</th>
<th>SARI 2009 (Jan-Dec)</th>
<th>ILI 2010 (Jan-Dec)</th>
<th>SARI 2010 (Jan-Dec)</th>
<th>ILI 2011 (Jan-Apr)</th>
<th>SARI 2011 (Jan-Apr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5</td>
<td>257 (25%)</td>
<td>124 (47%)</td>
<td>612 (42%)</td>
<td>167 (42%)</td>
<td>268 (39%)</td>
<td>114 (41%)</td>
</tr>
<tr>
<td>5-15</td>
<td>227 (22%)</td>
<td>82 (32%)</td>
<td>313 (21%)</td>
<td>110 (27%)</td>
<td>165 (24%)</td>
<td>69 (25%)</td>
</tr>
<tr>
<td>15-40</td>
<td>363 (34%)</td>
<td>34 (14%)</td>
<td>378 (26%)</td>
<td>56 (14%)</td>
<td>145 (21%)</td>
<td>54 (20%)</td>
</tr>
<tr>
<td>40-65</td>
<td>173 (17%)</td>
<td>13 (5%)</td>
<td>139 (9%)</td>
<td>46 (3%)</td>
<td>93 (14%)</td>
<td>30 (11%)</td>
</tr>
<tr>
<td>>65</td>
<td>13 (1%)</td>
<td>4 (1%)</td>
<td>18 (1%)</td>
<td>13 (12%)</td>
<td>10 (2%)</td>
<td>9 (3%)</td>
</tr>
</tbody>
</table>

Influenza Bali 5-7 JUNE 2012. JJ
MUYEMBE
TYPES AND SUBTYPES OF INFLUENZA VIRUSES CIRCULATING IN KINSHASA, DRCONGO: 2009 - 2011

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(January-December)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza positive****</td>
<td>208 (20%)</td>
<td>41 (16%)</td>
<td>196 (13%)</td>
<td>36 (9%)</td>
<td>98 (14%)</td>
<td>26 (9%)</td>
</tr>
<tr>
<td>A/seasonal H1N1</td>
<td>5 (2%)</td>
<td>5 (12%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A/pandemic H1N1</td>
<td>150 (72%)</td>
<td>7 (18%)</td>
<td>9 (4%)</td>
<td>2 (6%)</td>
<td>30 (31%)</td>
<td>10 (38%)</td>
</tr>
<tr>
<td>A/H3N2</td>
<td>22 (11%)</td>
<td>19 (46%)</td>
<td>66 (34%)</td>
<td>13 (36%)</td>
<td>60 (61%)</td>
<td>11 (42%)</td>
</tr>
<tr>
<td>B</td>
<td>13 (6%)</td>
<td>5 (12%)</td>
<td>118 (60%)</td>
<td>21 (58%)</td>
<td>0</td>
<td>1 (4%)</td>
</tr>
<tr>
<td>A/Non-subtypable</td>
<td>18 (9%)</td>
<td>3 (2%)</td>
<td>0</td>
<td>8 (8%)</td>
<td>4 (16%)</td>
<td></td>
</tr>
</tbody>
</table>

Influenza Bali 5-7 JUNE 2012, JJ MUYEMBE
AVIAN INFLUENZA SURVEILLANCE

During the surveillance period no suspecte cases of Avian Influenza where identified. But the risk does exist
CONCLUSION

In DRC, Influenza confused with malaria, typhoid fever etc...

The current identification of seasonality and age distribution is important to guide Public Health interventions