Understanding the broader context of design; the use of design ethnography in engineering global health technologies

Kathleen H. Sienko, Amir Sabet Sarvestani, Ibrahim Mohedas

Laboratory for Innovation in Global Health Technologies, University of Michigan, USA

Second Global Forum on Medical Devices, 2013
Designing for Global Health

Engineers must understand the broader context in which a medical device will be used.

Medical device design should be based on rigorous studies that generate quantitative outcomes rather than anecdotal evidence.
Design Ethnography

Encompasses a set of tools which allows one to understand and represent the perspectives of daily life, forming a complete understanding of stakeholders’ actions, words, and thoughts.
Case I: Traditional Adult Male Circumcision (TMC), Uganda

Problem:
- ~70% of deaths from AIDS in sub-Saharan Africa
- Male circumcision reduces HIV risk, ~60%
- Traditional male circumcision
 - Rite of passage
 - High complication rate, 35%

Need: Low-cost, safe, easy-to-use, and culturally appropriate tool to increase the likelihood of safe outcomes

Knowledge Gap:
- Cultural and traditional significance of TMC?
- Roles, responsibilities, and training processes for cutters before, during, and after TMC?
- Cutting techniques and handling of TMC adverse events?
- Recent changes in TMC and views on how to make TMC safer?
Case I: TMC, Uganda

Design Ethnography Methodologies:
- >25 focus group discussions in Uganda
- >30 interviews with public health officials
- TMC observations during circumcision season

Sample Results:
- Cultural significance and cost were main drivers
- Cutting style varied across ethnic groups

Design Implications:
- Significantly changed user requirements and engineering specifications
- Importance of working with stakeholders
Traditional Male Circumcision in Uganda: A Qualitative Focus Group Discussion Analysis

Amir Sabet Sarvestani¹, Leonard Bufumbo², James D. Geiger³, Kathleen H. Sienko⁴,⁵∗

¹ Design Science Program, University of Michigan, Ann Arbor, Michigan, United States of America, ² Family Health International, Kampala, Uganda, ³ Department of Pediatric Surgery, University of Michigan, Ann Arbor, Michigan, United States of America, ⁴ Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America, ⁵ Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
Case II: Blood Pressure (BP) Measurement, Ghana

Problem:

• Hypertensive disorders of pregnancy are major contributors to maternal mortality and morbidity
• Management depends on accurate, frequent BP measurements
• BP measurements are prone to equipment and human error

Need: Low-cost, easy-to-use method and associated device for identifying hypertension in women who are at risk for pre-eclampsia in rural low-resource settings

Knowledge Gap: What issues affect BP measurement and referral procedures in rural low-income settings?
Case II: BP Measurement, Ghana

Design Ethnography Methodology:
- ~75 interviews with clinicians, midwives, nurses, and CHWs
- Surveys and observations

Sample Results:
- CHWs in rural areas had variable BP measurement referral criteria
- Standard referral protocols were not being stringently followed

Design Implications:
- Innovative BP measurement methodology/device needs to incorporate features that prevent over/under-referral of patients
BRIEF COMMUNICATIONS

Discrepancies between clinicians and rural healthcare workers regarding referral procedures based on blood pressure measurements

Ibrahim Mohedas a, Frank W.J. Anderson b, Joseph Adomako c, Kathleen H. Sienko a,d,*

a Department of Mechanical Engineering, University of Michigan, Ann Arbor, USA
b Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, USA
c Ghana Health Service, District Health Directorate, Kuntanase, Ghana
d Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
Take away

Oftentimes the data needed to support medical device design process decisions don’t exist

Engineers/designers need to play an active role in gathering the information to inform design decisions versus relying on anecdotal evidence or making assumptions