Artificial prosthetic knee joint

Country of origin | Canada

Health problem addressed
Over 25 million people living in developing countries require the use of prosthetic and orthotic devices. Individuals who have had their leg(s) amputated above the knee joint due to trauma, disease or a congenital reason and are unable to walk without the use of a lower-limb prosthesis are the target population for this product. With an above-knee prosthesis, people with above-knee amputations will be able to walk, remain independent, productive and healthy.

Product description
The artificial knee joint is an integral part of the above-knee prostheses. The knee unit is simple in design and made of fiber-reinforced polymer construction. The lower end connects to a modular prosthetic system, which ultimately connects to an artificial foot. The upper end connects to a prosthetic socket with an attachment.

Product functionality
The knee unit utilizes a proprietary stance-phase control mechanism, termed the ‘Automatic Stance-Phase Lock (ASPL)’. It is composed of a knee lock that is automatically engaged as the knee becomes fully extended thus preventing the knee from bending. A combination of a hip flexion moment and loading of the forefoot unlocks the knee. This is a natural sequence of events that occurs at each step of walking and allows the knee to be stable as needed while facilitating natural swing-phase flexion.

The knee joint is fitted by a trained technician during the fabrication of the above-knee prostheses.

Developer’s claims of products benefits
One of the most common types of knee joints used in low resource settings is the manually locking knee that requires walking with either a straight leg or an unlocked one that is very unstable. This product provides a high level of stability during weight bearing and at the same time a high level of mobility. It is easy to assemble, can be used in water and wet environments without being damaged and is also low-cost.

Development stage
Independent product evaluations and clinical trials have been conducted in Canada, Chile, El Salvador, Germany, India and Myanmar. It was tested as part of the ISO 10328 standard-Prosthetics structural testing of lower-limb prostheses.

Future work and challenges
There is a need to establish a partnership with an international distributor. In addition, finalization of negotiations in regards to production is required in order to decrease further the product cost while ensuring high and consistent quality.

Use and maintenance
User: Self-use
Training: Not required
Maintenance: On-site as needed

Environment of use
Settings: Rural, urban, ambulatory, at home
Requirements: A facility with tools and materials and trained clinical/technical personnel to fit the product into a prosthesis

Product specifications
- Dimensions (mm): 60 x 80 x 180
- Weight (kg): 0.7
- Consumables: None
- Life time (years): 3-5
- Shelf life (years): 10
- Retail price (USD): NA
- List price (USD): 100
- Other features: Reusable
- Year of commercialization: Premarket launch 2013
- Currently sold in: Germany and used in Chile, Myanmar, Tanzania, India, Nicaragua and Canada.

Contact details
Jan Andrysek
Email: jan.andrysek@utoronto.ca
Telephone: +1 114 164 256 220

http://www.who.int/disabilities/technology
Disclaimer

Eligibility for inclusion in the compendium has been evaluated by WHO and external technical advisers listed in the Acknowledgements. However, the evaluation has been solely based on a limited assessment of data and information submitted in the developers’ applications and, where available, of additional sources of evidence, such as literature search results or other publicly available information. There has been no rigorous review for safety, efficacy, quality, applicability, nor cost acceptability of any of the technologies. Therefore, inclusion in the compendium does not constitute a warranty of the fitness of any technology for a particular purpose. Besides, the responsibility for the quality, safety and efficacy of each technology remains with the developer and/or manufacturer. The decision to include a particular technology in the compendium is subject to change on the basis of new information that may subsequently become available to WHO.

WHO will not be held to endorse nor to recommend any technology included in the compendium. Inclusion in the compendium solely aims at drawing stakeholders’ attention to innovative health technologies, either existing or under development, with a view to fostering the development and availability of, and/or access to, new and emerging technologies which are likely to be accessible, appropriate and affordable for use in low- and middle-income countries.

WHO does not furthermore warrant or represent that:

1. the list of innovative health technologies is exhaustive or error free; and/or that
2. the technologies which are included in the compendium will be embodied in future editions of the compendium; and/or that
3. the use of the technologies listed is, or will be, in accordance with the national laws and regulations of any country, including but not limited to patent laws; and/or that
4. any product that may be developed from the listed technologies will be successfully commercialized in target countries or that WHO will finance or otherwise support the development or commercialization of any such product.

WHO disclaims any and all liability and responsibility whatsoever for any injury, death, loss, damage, use of personal data, or other prejudice of any kind whatsoever that may arise as a result of, or in connection with, the procurement, distribution and/or use of any technology embodied in the compendium, or of any resulting product and any future development thereof.

Developers whose technology has been included in the compendium shall not, in any statement of an advertising, commercial and/or promotional nature, refer to their participation and/or inclusion in the compendium. In no case shall the latter use the WHO name and/or the emblem, or any abbreviation thereof, in relation to their business or otherwise.