Critical Review Report:

5F-MDMB-PICA

Expert Committee on Drug Dependence
Forty-second Meeting
Geneva, 21-25 October 2019

This report contains the views of an international group of experts, and does not necessarily represent the decisions or the stated policy of the World Health Organization
Contents

Acknowledgements .. 5

Executive Summary ... 6

1. Substance identification ... 9
 A. International Nonproprietary Name (INN) .. 9
 B. Chemical Abstract Service (CAS) Registry Number .. 9
 C. Other Chemical Names ... 9
 D. Trade Names ... 9
 E. Street Names ... 9
 F. Physical Appearance .. 9
 G. WHO Review History ... 9

2. Chemistry .. 10
 A. Chemical Name .. 10
 B. Chemical Structure .. 10
 C. Stereoisomers .. 10
 D. Methods and Ease of Illicit Manufacturing ... 10
 E. Chemical Properties .. 11
 F. Identification and Analysis .. 11

3. Ease of Convertibility Into Controlled Substances .. 12

4. General Pharmacology .. 12
 A. Routes of administration and dosage .. 12
 B. Pharmacokinetics .. 12
 A. Pharmacodynamics .. 13

5. Toxicology .. 15

6. Adverse Reactions in Humans .. 15

7. Dependence Potential ... 18
 A. Animal Studies .. 18
 B. Human Studies .. 18

8. Abuse Potential .. 18
 A. Animal Studies .. 18
 B. Human Studies .. 18

9. Therapeutic Applications and Extent of Therapeutic Use and Epidemiology of Medical Use 18

10. Listing on the WHO Model List of Essential Medicines .. 18

11. Marketing Authorizations (as a Medicinal Product) .. 18

12. Industrial Use ... 18

13. Non-Medical Use, Abuse and Dependence .. 18
15. Licit Production, Consumption and International Trade... 20
16. Illicit Manufacture and Traffic and Related Information.. 20
17. Current International Controls and Their Impact.. 21
18. Current and Past National Controls... 21
19. Other Medical and Scientific Matters Relevant for a Recommendation on the Scheduling of the Substance .. 21

References.. 22
Acknowledgements

This document was produced for the WHO Expert Committee on Drug Dependence (ECDD) under the overall direction of the WHO Secretariat led by Dr Gilles Forte (Division of Access to Medicines, Vaccines, and Pharmaceuticals). The document was written by Dr Simon Brandt under the technical direction of Dr Dilkushi Poovendran (Division of Access to Medicines, Vaccines, and Pharmaceuticals). The report was edited by Professor Kim Wolff. The member state questionnaire was produced under the technical direction of Ms Judith Sprunken (Division of Access to Medicines, Vaccines, and Pharmaceuticals).

The WHO Secretariat would also like to thank the European Monitoring Centre for Drugs and Drug Addiction (EMCCDA), International Narcotics Control Board (INCB), United Nations Office of Drugs and Crime (UNODC), and Member States for providing relevant information for the review of substances. The WHO Secretariat would also like to thank the EMCCDA for providing data on 5F-MDMB-PICA collected through the European Union Early Warning System, which includes data provided by Reitox National Focal Points in the EU Member States, Turkey and Norway, as well as the Europol National Units.
Executive Summary

Substance identification
The identification of 5F-MDMB-PICA (5F-MDMB-2201) (IUPAC name: methyl (2S)-2-[[1-(5-fluoropentyl)-1H-indole-3-carbonyl]amino]-3,3-dimethylbutanoate) has been described first in 2016. Information obtained from seizures and collections suggests that it has been encountered in powdered form and as a synthetic constituent in herbal plant mixtures most commonly distributed for the purpose of smoking and/or vaping. It is the indole analogue of 5F-ADB (5F-MDMB-PINACA) that is listed in Schedule II of the Convention on Psychotropic Substances of 1971.

WHO Review History
5F-MDMB-PICA has not been previously pre-reviewed or critically reviewed.

Chemistry
There is no specific information available about the routes of synthesis employed for seized 5F-MDMB-PICA products circulating on the drug market but straightforward methods for its preparation exist without requiring access to precursors that are controlled internationally. The presence of an asymmetric carbon atom gives rise to the (R-) and (S-) enantiomer and it seems likely for 5F-MDMB-PICA to be most commonly available as the (S)-enantiomer.

Ease of convertibility into controlled substances
There is no specific information available but it appears unlikely that 5F-MDMB-PICA is converted into a substance currently listed in any of the international drug conventions.

Similarity to known substances / Effects on the central nervous system
The information currently available suggests that 5F-MDMB-PICA functions as a synthetic cannabinoid receptor agonist (SCRA). Information about effects induced in vivo is currently not available but the existing data suggest that 5F-MDMB-PICA will likely exhibit a profile shared by other SCRAs controlled internationally (potent full agonists at cannabinoid receptors) such as 5F-ADB.

General pharmacology
5F-MDMB-PICA, in its pure form but mostly as a synthetic constituent added to a plant matrix, is primarily smoked (or vaped) although reliable data about dosage are unavailable. A small number of in vitro studies are currently available and the data indicate that 5F-MDMB-PICA binds to and activates human CB1 and CB2 receptors at low nanomolar concentrations. 5F-MDMB-PICA acted as a full agonist at both receptor subtypes with significantly higher potency than Δ9-THC which has also been observed with other SCRAs that are listed in the Convention on Psychotropic Substances of 1971. Data collected from in vitro metabolism studies and detections in biological specimens revealed that the biotransformation observed included mono-hydroxylation, oxidative defluorination, dehydrogenation, amide, and ester hydrolysis, as well as combinations thereof. Glucuronidation products have also been detected.
Toxicology
Information could not be identified.

Adverse reactions in humans
Detailed information about the clinical features associated with the consumption of 5F-MDMB-PICA specifically is not available. However, “mass-overdose” cases were described in Connecticut (United States of America (USA)) that have been associated with the detection of 5F-MDMB-PICA and other SCRAs and fentanyl. Clinical features reported included decreased mental status, agitated delirium, and seizures. Within a 6-day period in September 2018, 244 overdose cases (details not reported) have been identified in Washington, DC, (USA) that also included the detection of 5F-ADB and other SCRAs. Data collected from intoxication cases with other SCRAs suggest that clinical features might include a range of adverse effects on gastrointestinal, neurological, and cardiovascular systems.

Dependence potential
No studies carried out in humans or animals could be identified.

Abuse potential
Studies specifically linked to 5F-MDMB-PICA could not be identified.

Therapeutic applications / usefulness
5F-MDMB-PICA is not known to have any therapeutic uses.

Listing on WHO Model List of Essential Medicines
5F-MDMB-PICA is not listed.

Marketing authorizations
5F-MDMB-PICA is not known to have any marketing authorisations.

Industrial use
5F-MDMB-PICA is not known to have any agricultural, industrial or cosmetic uses.

Non-medical use
The mode of use may involve the combinational use (intentionally or unintentionally) of other drugs and users may be unaware of the exact dose or compound being ingested (by whatever route). Household or subpopulation surveys that specifically probe for prevalence of 5F-MDMB-PICA could not be identified. People who use SCRAs in general include recreational users, high-risk substance users but also individuals who are subject to drug testing such as people in drug treatment, prisoners, abstinence control programs and drivers.

Nature and magnitude of public health problems
Products sold as herbal smoking mixtures frequently change in drug composition and quantity, often without indications on product labels, which results in challenges to unambiguously correlate harms to public health with a specific drug such as 5F-MDMB-PICA. People who use these drugs are most likely not aware of the identity of the constituent and the quantity. The
consumption of these products might be attractive to a variety of users, such as regular users of cannabis and those who believe that SCRA use might help with avoiding a positive finding in drug-testing procedures. There are indications that socially vulnerable and stigmatised substance users, for example found in homeless and prison populations, are increasingly associated with problematic use of SCRA products. Heavy use of SCRAs has been associated with problematic withdrawal symptoms and further research is needed to evaluate the underlying mechanisms.

Licit production, consumption, and international trade
5F-MDMB-PICA is available as standard reference material and produced for scientific research by a number of commercial suppliers. Other uses could not be identified.

Illicit manufacture and traffic
5F-MDMB-PICA began to emerge at the end 2016 both in Europe and the USA. In general, SCRAs are often imported in their pure form and converted into herbal forms on the domestic level. In recent years it has emerged that SCRAs have been smuggled into prisons in the form of impregnated papers (e.g. letters) and textiles and this extended to the detection of 5F-MDMB-PICA.

Current international controls and their impact
5F-MDMB-PICA is not controlled under the 1961, 1971 or 1988 United Nations Conventions.

Current and past national controls
5F-MDMB-PICA is controlled in some UN Member States.
1. Substance identification

A. International Nonproprietary Name (INN)
 Not available.

B. Chemical Abstract Service (CAS) Registry Number
 1971007-88-1 ((S)-enantiomer)

C. Other Chemical Names
 Methyl (S)-2-(1-(5-fluoropentyl)-1H-indole-3-carboxamido)-3,3-dimethylbutanoate
 Methyl (2S)-2-[[1-(5-fluoropentyl)-1H-indole-3-carbonyl]amino]-3,3-dimethylbutanoate
 N-[[1-(5-Fluoropentyl)-1H-indol-3-yl]carbonyl]-3-methyl-L-valine, methyl ester

D. Trade Names
 Not available.

E. Street Names
 5F-MDMB-PICA
 5F-MDMB-2201
 5-Fluoro-MDMB-PICA
 5-Fluoro-MDMB-2201

 5F-MDMB-PICA has also been detected in a number of seized branded herbal smoking mixtures and product names included ‘Mind Trip’, ‘Devil’, ‘Armageddon’, ‘Trippy Top’, ‘Tropical High’, ‘Astro’, ‘Red Russian’, ‘Supernova’, ‘AK-47’, ‘Dead Man Walking’, and ‘Joker’ (1). However, products associated with the sale of synthetic cannabinoid receptor agonists rarely retain the same composition and will frequently change over time.

F. Physical Appearance
 5F-MDMB-PICA has been described as a white solid (2) and crystalline solid (3).

G. WHO Review History
 5F-MDMB-PICA has not been previously pre-reviewed or critically reviewed. A direct critical review is proposed based on information brought to WHO’s attention that 5F-MDMB-PICA clandestinely manufactured, of especially serious risk to public health and society, and of no recognized therapeutic use by any party. Preliminary data collected from literature and different countries indicated that this substance may cause substantial harm and that it has no medical use.
2. Chemistry

A. Chemical Name

IUPAC Name: Methyl (2S)-2-[[1-(5-fluoropentyl)-1H-indole-3-carbonyl]amino]-3,3-dimethylbutanoate

Methyl N-[1-(5-fluoropentyl)-1H-indole-3-carbonyl]-3-methyl-L-valinate

CA Index Name: L-Valine, N-[1-(5-fluoropentyl)-1H-indol-3-yl]carbonyl]-3-methyl-, methyl ester

B. Chemical Structure

Free base:

![Chemical Structure Diagram]

Molecular Formula: C_{21}H_{29}FN_{2}O_{3}
Molecular Weight: 376.47 g/mol

C. Stereoisomers

The presence of an asymmetric carbon atom gives rise to the (R)- and (S)-enantiomer of 5F-MDMB-PICA. Historically, structurally related synthetic cannabinoid receptor agonists (SCRAs) that feature such chiral centres have typically shown the (S)-configuration. It is currently not known whether 5F-MDMB-PICA has been exclusively found on the market with the absolute (S)-configuration although it appears very likely to be the case. Similar to other closely related SCRAs, it seems conceivable that the (R)-enantiomer might be detectable (e.g. 4, 5).

D. Methods and Ease of Illicit Manufacturing

Information on the manufacturing of 5F-MDMB-PICA seized or collected from the market is not available. Its preparation is straightforward and follows standard procedures using cheap reagents. One option used for the synthesis of 5F-MDMB-
PICA is shown in the Scheme below (2). Using a one-pot procedure, indole (A) was subjected to N-alkylation and conversion to the trifluoroacetylindole analogue (B). Hydrolysis gave the carboxylic acid intermediate (C) that then underwent coupling with L-tert-Leucine methyl ester to afford 5F-MDMB-PICA (D).

![Chemical Scheme]

Reagents and conditions: (a) (i) NaH, 1-bromo-5-fluoropentane, DMF, 0 °C–rt, 1 h; (ii) (CF₃CO)₂O, DMF, 0 °C–rt, 1 h; (b) 1 M aq. NaOH, MeOH, reflux, 24 h; (c) methyl L-tert-leucinate, EDC·HCl, HOBt, DIPEA, DMSO, rt, 24 h (2).

E. **Chemical Properties**

Melting point: 82–84 °C (2)

Boiling point: Information could not be identified.

Solubility: A sample obtained from a test purchase was reported to be soluble in dichloromethane and methanol and partially soluble in water (6).

F. **Identification and Analysis**

Data and analytical methodologies that facilitate the identification of 5F-MDMB-PICA in various sample matrices are available and include physical characteristics (melting point), chromatographic, spectroscopic, and mass spectrometric methods (Annex 2).

Analytical reference standards are accessible to assist with the implementation of routine methods of analysis associated with forensic and clinical investigations. The analytical determination of synthetic cannabinoid receptor agonists such as 5F-MDMB-PICA in biological fluids can be a challenge, for example in cases where analytical methodologies are not specifically designed to detect these substances. In some instances (e.g. analysis of urine), the detection of metabolites may be the preferred approach. The explicit identification of the (S)-enantiomer has not been confirmed in the reports associated with the identification of 5F-MDMB-PICA but it appears conceivable that the 5F-MDMB-PICA available on the market predominantly exists as the (S)-enantiomer. However, until further information is available, one cannot exclude the existence of the (R)-enantiomer and the
differentiation between the two might present challenges in routine forensic laboratories unless more specific approaches are employed to facilitate chiral analysis. The implementation of immunoassays for the analysis of human authentic urine samples containing 5F-MDMB-PICA metabolites was shown to be unreliable (1).

3. Ease of Convertibility Into Controlled Substances
No information could be identified.

4. General Pharmacology

A. Routes of administration and dosage

5F-MDMB-PICA, in its pure form but mostly as a synthetic constituent added to a plant matrix, is primarily smoked (or vaped) although reliable data about dosage are unavailable. The variations in drug composition and quantities frequently observed with many smoking mixtures make such estimation impossible for users despite the information displayed on a product label (e.g. (7, 8)). It has been suggested that the amide and ester hydrolysis products might be expected to form during pyrolysis (1) though these might not retain psychoactive properties. Ten samples seized in New Zealand in 2017 were reported to contain 5F-MDMB-PICA with an average concentration of 9 g/kg (range 3–16 g/kg, RSD = 13%) (9).

B. Pharmacokinetics

Information from clinical studies in humans is not available. A recent study investigated the metabolic fate of 5F-MDMB-PICA in an in vitro assay using pooled human liver microsomes (1, 10). The identified phase I metabolites were then compared with metabolites obtained from authentic human urine samples (1). In this matrix, 12 phase I metabolites of 5F-MDMB-PICA were detected and assigned to 9 different biotransformations, including mono-hydroxylation, oxidative defluorination, dehydrogenation, amide, and ester hydrolysis, as well as combinations thereof. Eleven of the 12 metabolites were also detected in vitro. The four most abundant metabolites were 1) the methyl ester hydrolysis product, 2) the indole-N-propionic acid derivative, 3) a hydroxylated indole species, and 4) the hydroxylated (N-alkyl chain) methyl ester hydrolysis product. Numbers 1) and 3) were also considered suitable biomarkers for consumption of 5F-MDMB-PICA. Two of the main phase I metabolites were also identified as glucuronidation products (1).

In a more recent investigation, 22 metabolites were detected following hepatocyte incubations and analysis of authentic human urine samples. Metabolites were formed via carboxylation or hydroxylation on the aliphatic chain or aromatic ring followed by glucuronidation; N-dealkylation followed by hydroxylation on the aromatic ring; oxidative defluorination followed by conversion to pentanoic acid; oxidative defluorination with conversion to propionic acid. Oxidative defluorination pathway also subsequently underwent hydroxylation on the aromatic ring followed by N-dealkylation or glucuronidation. The ester hydrolysis metabolite was further
metabolized via hydroxylation, glucuronidation, or dehydrogenation followed by N-dealkylation, or ester hydrolysis with oxidative defluorination followed by dehydrogenation, or conversion to pentanoic acid. The two most abundant metabolites after the 5 h incubation with hepatocytes were ester hydrolysis and ester hydrolysis with oxidative defluorination (11).

A. Pharmacodynamics

Data currently available from some in vitro studies indicate that 5F-MDMB-PICA functions like a synthetic cannabinoid receptor agonist (SCRA) as it has been found to bind and activate CB₁ and CB₂ receptors (Table 1).

Although the binding affinity ([³H]CP-55,940, HEK cells) was slightly lower (Kᵢ = 5.4 nM) compared to Δ⁹-THC (Kᵢ = 2.5 nM) (12), the various functional assays employed revealed that 5F-MBMD-PICA was significantly more potent than Δ⁹-THC and other SCRAs used as positive controls. The available information also suggests that 5F-MDMB-PICA is a potent agonist at both receptor subtypes (Table 1). At the time of writing, information on the in vivo effects of 5F-MDMB-PICA could not be identified.
<table>
<thead>
<tr>
<th>Table 1. 5F-MDMB in-vitro data</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional activity and efficacy: a</td>
<td>(2)</td>
</tr>
<tr>
<td>5F-MDMB-PICA at hCB₁: EC₅₀ = 0.45 nM (Eₘₐₓ = 110%); hCB₂: EC₅₀ = 7.4 nM (Eₘₐₓ = 94%); Δ⁹-THC at hCB₁: EC₅₀ = 171 nM (Eₘₐₓ = 50%); hCB₂: EC₅₀ not determined; too low (Eₘₐₓ = 20% at 10,000 nM)</td>
<td></td>
</tr>
<tr>
<td>CP-55,490 at hCB₁: EC₅₀ = 42 nM (Eₘₐₓ = 100%); hCB₂: EC₅₀ = 68 nM (Eₘₐₓ = 100%)</td>
<td></td>
</tr>
<tr>
<td>5F-ADB at hCB₁: EC₅₀ = 0.59 nM (Eₘₐₓ = 108%); hCB₂: EC₅₀ = 7.5 nM (Eₘₐₓ = 94%)</td>
<td></td>
</tr>
</tbody>
</table>

Receptor binding: b	
5F-MDMB-PICA at CB₁: Kᵢ = 5.4 nM	(12)
(R)-(+) WIN-55,212-2 at CB₁: Kᵢ = 21.4 nM	
Δ⁹-THC at hCB₁: Kᵢ = 2.46 nM	

Functional activity: c	
5F-MDMB-PICA, EC₅₀ = 0.21 nM (Eₘₐₓ = 92.5%)	
(-)-CP-55,940, EC₅₀ = 0.53 nM (Eₘₐₓ = 102.3%)	
Δ⁹-THC, EC₅₀ = 25.9 nM (Eₘₐₓ = 78.5%)	

Functional activity and efficacy: d	
Operational efficacy tau at CB₁: 5F-MDMB-PICA (314), CP-55,490 (91), WIN-55,212-2 (24), Δ⁹-THC (1.3).	(13)
Functional affinity pKₐ at CB₁: 5F-MDMB-PICA (6.55), CP-55,490 (5.37), WIN-55,212-2 (5.27), Δ⁹-THC (5.65).	

| **Functional activity and efficacy:** e | |
| 5F-MDMB-PICA at hCB₁: EC₅₀ = 3.26 nM (Eₘₐₓ = 331%); hCB₂: EC₅₀ = 0.87 nM (Eₘₐₓ = 244%); JWH-018 at hCB₁: EC₅₀ = 41 nM (Eₘₐₓ = 99.3%); hCB₂: EC₅₀ = 12.3 nM (Eₘₐₓ = 104%) | (14) |

Functional activity (hCB₁): f	
5F-MDMB-PICA, EC₅₀ = 27.6 nM (Eₘₐₓ = 83%, 129%)	(11)
5F-MDMB-PINACA (5F-ADB), EC₅₀ = 15.7 nM (Eₘₐₓ = 88%, 136%)	
JWH-018, EC₅₀ = 36.6 nM (Eₘₐₓ not reported, 100%)	
5. Toxicology

Information could not be identified.

6. Adverse Reactions in Humans

Available reports associated with the detection of 5F-MDMB-PICA in biofluids are included in Appendix 2 though information about any clinical features associated with the detection of this drug (e.g. 1, 15), was not documented. The published information related to intoxications and adverse reactions are available in an aggregated form only which means that causal links with 5F-MDMB-PICA specifically cannot be identified based on the available information alone.

“Mass-overdose” cases were described in New Haven, Connecticut (USA) that occurred in August 2018 where intoxicated patients presented to emergency departments (EDs) (16). Detailed information related to 5F-MDMB-PICA specifically was not reported. The information from the published abstract revealed the following: fifty-two patients presented over 109 ED visits (range 1–13 visits per patient); 49 of these visits occurred
within a 10 h period on 15 August 2018. Symptoms described to vary significantly between visits (including patients with multiple visits) and included decreased mental status (51/109), agitated delirium (13/109), and seizures (5/109). Naloxone use was documented in 13/109 visits, with mixed responses. Two patients were intubated for decreased mental status. Urine samples from 21 patients were found to contain 5F-MDMB-PICA (5/21), 5F-ADB and FUB-AMB metabolites (20/21), and fentanyl (4/21). Unstructured interviews with patients revealed that products containing SCRA may have been given away freely or very cheaply by multiple dealers targeting methadone users in a competitive open-air market on the town green (16).

The Background Information and Evaluation of ‘Three Factor Analysis’ (Factors 4, 5, and 6) for Temporary Scheduling document linked to the temporary placement of 5F-MDMB-PICA (among other SCRA) into Schedule I of the United States Controlled Substances Act provided a summary of the number of exposure calls received by US poison control centres (Table 2). It has been stated that “the misuse of 5F-EDMB-PINACA, 5F-MDMB-PICA, FUB-AKB48, 5F-CUMYL-PINACA and FUB-144 has been associated with law enforcement seizures, overdoses requiring emergency medical intervention, or both” but without providing further details (17).

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>6,968</td>
</tr>
<tr>
<td>2012</td>
<td>5,230</td>
</tr>
<tr>
<td>2013</td>
<td>2,668</td>
</tr>
<tr>
<td>2014</td>
<td>3,682</td>
</tr>
<tr>
<td>2015</td>
<td>7,797</td>
</tr>
<tr>
<td>2016</td>
<td>2,706</td>
</tr>
<tr>
<td>2017</td>
<td>1,959</td>
</tr>
<tr>
<td>2018 (up to 30 September 2018)</td>
<td>1,627</td>
</tr>
</tbody>
</table>

* Adapted from reference (17)

* American Association of Poison Control Centers (AAPCC), 23 October 2018

* Summary of exposure calls related to SCRA in general. 5F-MDMB-PICA identified in the USA first in October 2016 (17) and number of cases related to 5F-MDMB-PICA specifically, however, cannot be extracted from this table.

The document announcing the temporary placement of 5F-MDMB-PICA (and 5F-EDMB-PINACA, FUB-AKB48, 5F-CUMYL-PINACA, and FUB-144) into Schedule I of the US Controlled Substances Act (18) also states that “In August 2018, in New Haven, Connecticut, in excess of 47 overdoses were reported following the use of a synthetic cannabinoid product. Analysis of drug evidence from the overdose event confirmed the presence of the synthetic cannabinoids 5F-ADB, FUB-AMB and 5F-MDMB-PICA” (see also above, reference (16) and Appendix 2). Furthermore, “from September 10 to 16, 2018, in Washington, DC, at least 244 overdoses were reported following use of a synthetic cannabinoid product.
Analysis of drug evidence from the overdose event confirmed the presence of the synthetic cannabinoids FUB-AMB and 5F-MDMB-PICA" (18). More specific information related to 5F-MDMB-PICA could not be identified.

Reported adverse drug reactions associated with a range SCRAs frequently include gastrointestinal (e.g. nausea/hyperemesis), neurological (e.g. hallucination, agitation, anxiety, paranoia, confusion, delusions, catatonia, lethargy, psychosis (including susceptible individuals)), cardiovascular (e.g. tachycardia, hypertension) and renal (e.g. acute kidney failure) clinical features (e.g. (19-22)).

In a recent UNODC communication to the ECDD secretariat, data from the UNODC’s ToxPortal that collects death and clinical cases contained 13 cases related to 5F-MDMB-PICA (23). One incident was reported from the USA in 2018, one from Germany in 2018, and 10 from New Zealand 2018/2019. In 4 cases the contribution could not be determined, while it was rated low in 2, medium in 1 and high in another 6 cases. In an updated report provided by the UNODC that includes data obtained from the UNODC’s ToxPortal, a total number of 33 case reports involving the detection of 5F-MDMB-PICA were recorded (24). More detailed case level information was not provided (Table 3):

<table>
<thead>
<tr>
<th>Case reports</th>
<th>Reporting country</th>
<th>Type of cases</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017 (3)</td>
<td>New Zealand (21)</td>
<td>Post-mortem</td>
<td>15/17 poly-drug cases. NPS and controlled substances detected in 8 cases and medicines in 3.</td>
</tr>
<tr>
<td>2018 (12)</td>
<td>Singapore (8)</td>
<td>Post-mortem</td>
<td>12/15 poly-drug cases. NPS and/or metabolites detected in 10 cases and controlled substances in 2 cases.</td>
</tr>
<tr>
<td>2019 (18)</td>
<td>Germany (2)</td>
<td>Clinical admission (15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USA (2)</td>
<td>Other cases (1)</td>
<td>–</td>
</tr>
</tbody>
</table>

5F-MDMB-PICA was detected in biological specimens collected from two post-mortem cases (11). In case 1, a 47-year-old male (history of drug abuse and diagnosed with type I diabetes) was found dead. Examination revealed pulmonary edema, fatty liver and underweight. Toxicological analysis showed no ethanol but 0.45 part per thousand of acetone in femoral blood as well as 0.60 part per thousand in urine. Vitreous glucose was 78.4 mmol/L and the femoral blood had an elevated BHB at >1000 μg/g. The only exogenous compound found was 0.28 ng/g 5F-MDMB-PICA in femoral blood. The investigation concluded that the cause of death was diabetic ketoacidosis. In case 2, a 49-year-old male (history of alcohol and drug abuse) was found dead. Examination was unremarkable without underlying pathology. The toxicological analysis revealed no ethanol but 0.13 part per thousand of acetone in femoral blood as well as 0.74 part per thousand in urine. Glucose was negative but the femoral blood had an elevated BHB at >1000 μg/g.
The only exogenous compound found was 0.32 ng 5F-MDMB-PICA/g femoral blood. The cause of death was considered due to ketoacidosis possibly with a contribution from drug use (11).

7. Dependence Potential

 A. Animal Studies
 Information could not be identified.

 B. Human Studies
 Information could not be identified.

8. Abuse Potential

 A. Animal Studies
 Information could not be identified.

 B. Human Studies
 Information could not be identified.

9. Therapeutic Applications and Extent of Therapeutic Use and Epidemiology of Medical Use

 5F-MDMB-PICA is not known to have any therapeutic applications.

10. Listing on the WHO Model List of Essential Medicines

 5F-MDMB-PICA is not listed on the WHO Model List of Essential Medicines.

11. Marketing Authorizations (as a Medicinal Product)

 5F-MDMB-PICA is not marketed as a medicinal product

12. Industrial Use

 5F-MDMB-PICA has no reported industrial use.

13. Non-Medical Use, Abuse and Dependence

 Household or subpopulation surveys that specifically probe for prevalence of 5F-MDMB-PICA could not be identified in the currently available literature. Epidemiological data, such as prevalence of use, abuse and dependence information, are not available specifically for 5F-MDMB-PICA. The Monitoring the Future (MTF), a national cross-sectional survey in the United States of America that queries use of SCRAs among high-school attending
adolescents revealed a decrease in past-year use from 11.86% in 2011 to 4.75% in 2015. It was however found that the decrease was slower for some subgroups, predominantly those with high socioeconomic status and those who are frequent marijuana users. Across time, risk factors for use also include older adolescents, adolescents who identify as Hispanic/mixed race, and cigarette/other substance users (25).

Heavy use of synthetic cannabinoid receptor agonists has been associated with problematic withdrawal symptoms (e.g. (26, 27)) and further research is needed to investigate the underlying mechanisms. As highlighted by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), people who use SCRA include recreational users, high-risk drug users but also individuals who are subject to drug testing such as people in drug treatment, prisoners and drivers (28, 29).

The majority of available SCRA products (including those containing 5F-MDMB-PICA) is sold in the form of herbal mixtures, and designed for smoking purposes and vaping (for example in the form of e-liquids). It is common for retailers to purchase bulk quantities of the synthetic substance and to add the synthetic material to a variety of vegetable matter as the plant base. Products sold as herbal smoking mixtures frequently change in drug composition and quantity, often without indications on product labels, which results in challenges to unambiguously correlate harms to public health with a specific drug such as 5F-MDMB-PICA. The consumption of these products might be attractive to a variety of users, such as regular users of cannabis and those who believe that SCRA use might help with avoiding positive findings in drug-testing procedures. Ease of access, and perceived lack of legislative control might equally be of interest to some users. However, people who use these drugs are most likely not aware of the constituent and the quantity. The high potency associated with many SCRA carries the risk of accidental overdose and potentially severe adverse events but information specific to 5F-MDMB-PICA is limited. Cases of impaired driving and motor vehicle collisions have been reported with closely related SCRA such as the indazole analogue 5F-ADB (30). There are indications that socially vulnerable and stigmatised substance users, for example found in homeless and prison populations, are increasingly associated with problematic use of SCRA products (31-34). SCRA use in prisons has been associated with increase in aggression, violence, bullying and debt but also serious threats to safety and security of the prison environment (28, 29). The detections of 5F-MDMB-PICA in biological specimens (Section 16) confirm that this substance is consumed either intentionally or unintentionally though detailed information on the extent of use and circumstances is not available.

A number of trend reports published in the USA have also featured the detection of 5F-MDMB-PICA in various biological samples or sample extracts. In total, cases were submitted from 24 US States and the District of Colombia (Table 4).
Table 4. Trend reports that feature the detection of 5F-MDMB-PICA.a

<table>
<thead>
<tr>
<th>Time frame</th>
<th>Positive findings</th>
<th>5F-ADB</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan–Aug 2018</td>
<td>13 out of 1,037 specimens</td>
<td>100 out of 1,037 specimens</td>
<td>(35)</td>
</tr>
<tr>
<td></td>
<td>Metabolites: NRb</td>
<td>Metabolites: 61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Combinations: 6</td>
<td>Combinations: 10</td>
<td></td>
</tr>
<tr>
<td>Oct–Dec 2018</td>
<td>27 out of 964 specimens</td>
<td>32 out of 964 specimens</td>
<td>(36)</td>
</tr>
<tr>
<td></td>
<td>Metabolites: 4</td>
<td>Metabolites: 31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Combinations: 8</td>
<td>Combinations: 11</td>
<td></td>
</tr>
<tr>
<td>Jan–Mar 2019</td>
<td>52 out of 1,533 specimens</td>
<td>8 out of 1,533 specimens</td>
<td>(37)</td>
</tr>
<tr>
<td></td>
<td>Metabolites: 23</td>
<td>Metabolites: 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Combinations: 13</td>
<td>Combinations: 3</td>
<td></td>
</tr>
<tr>
<td>Apr–June 2019</td>
<td>64 out of 1,328 specimens</td>
<td>None reported.</td>
<td>(38)</td>
</tr>
<tr>
<td></td>
<td>Metabolites: 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Combinations: 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a 5F-ADB (SCRA reviewed during 39th ECDD, (30)) results included for comparison.

b NR: not reported.

15. **Licit Production, Consumption and International Trade**

5F-MDMB-PICA is available as standard reference material and produced for scientific research by a number of commercial suppliers. Other uses could not be identified.

16. **Illicit Manufacture and Traffic and Related Information**

EMCDDA received reports that 5F-MDMB-PICA (detection first notified in September 2016 (39)) was encountered in seizures and collected specimens (herbal mixtures or powders) in Germany, Belgium, France, Denmark, Cyprus, Turkey, Sweden, Romania, Slovenia, Lithuania, Croatia, United Kingdom, and Serbia (40). SCRAs are typically imported from Chinese suppliers and prepared locally for distribution in their herbal form (28).

5F-MDMB-PICA was first identified in the United States of America (USA) in October 2016 (17).

The National Forensic Laboratory Information System (NFLIS), which is dedicated to the collection of drug cases submitted by State and local laboratories in the USA, registered two reports in 2016, 84 in 2017, and 29 in 2018 (query date 25 July 2018) (17). At the same time of querying STRIDE and STARLiMS databases, no reports related to 5F-MDMB-PICA could be identified (17). The temporary scheduling order (USA, Controlled Substances Act) document stated that 5F-MDMB-PICA was identified in 381 NFLIS reports from 22 US States, since 2016 and 32 STRIDE/STARLiMS reports from seven US States and the District of Columbia, since 2017 (18). According to information received by the secretariat of the ECDD the total number of drug reports (NFLIS and federal forensic labs) (NFLIS data still pending for 2017-2018) was 849. In the period January 2018–June 2018, 197 reports related to 5F-MDMB-PICA were registered by NFLIS compared to 4,135 for 5F-ADB and 2,972 for FUB-AMB (41).
Detections of 5F-MDMB-PICA have also been reported to UNODC’s Early Warning Advisory on New Psychoactive Substances (42). Detections of 5F-MDMB-PICA were reported by 6 countries in 2016, 14 countries in 2017, and 10 countries in 2018 (as of 25 July 2019).

The US National DRUG Early Warning System (NDEWS) hosted at the University of Maryland (USA) publishes Emerging Threat Reports based on the US Drug Enforcement Administration’s Special Testing and Research Laboratory’s Emerging Trend Program. For the first quarter of 2019, the report featured 9 out of 30 identifications (43).

In recent years it has emerged that SCRAAs have been smuggled into prisons in the form of impregnated papers (e.g. letters) and textiles (29, 44, 45) including 5F-MDMB-PICA (46).

In a drug-monitoring pilot programme covering three Scottish prisons in the United Kingdom, suspected SCRA-infused paper samples were seized for analytical evaluation in the period between 01 June 2018 and 01 July 2019. In this period, 257 individual paper samples obtained from 116 seizures were analysed which revealed the detection of at least one SCRA in 108 samples (42%). 5F-MDMB-PICA began to emerge in November 2018 and became one of the most commonly detected SCRAAs (36.7%, n = 106 in total), thereby replacing 5F-ADB, and FUB-AMB as the most commonly detected compounds in infused papers until that time (47).

17. **Current International Controls and Their Impact**

5F-MDMB-PICA is not controlled under the 1961 (as amended by the 1972 Protocol), 1971 or 1988 United Nation Conventions.

18. **Current and Past National Controls**

Refer to Annex 1: Report on WHO questionnaire for review of psychoactive substances.

19. **Other Medical and Scientific Matters Relevant for a Recommendation on the Scheduling of the Substance**

No further comments.
References

3. 5F-MDMB-PICA. Cayman Chemical. Product Information. Ann Arbor, Michigan, USA. Available at: https://www.caymanchem.com/pdfs/20803.pdf

12. Janowsky A. *N*-[1-(5-Fluoropentyl)-1H-indol-3-yl]-carbonyl]-3-methyl-L-valine, methyl ester. Binding and functional activity at cannabinoid CB1 receptors. DEA-VA Interagency Agreement Title: "In Vitro Receptor and Transporter Assays for Abuse Liability Testing for the DEA by the VA". Research Service (R&D-22), Department of Veterans Affairs Medical Center, Portland, OR, USA.

17. U.S. Drug Enforcement Administration. Ethyl 2-(1-(5-fluoropentyl)-1H-indazole-3-carboxamido)-3,3-dimethylbutanoate (trivial name: 5F-EDMB-PINACA); methyl 2-(1-(5-fluoropentyl)-1H-indole-3-carboxamido)-3,3- dimethylbutanoate (trivial name: 5F-MDMB-PICA); N-(adamantan-1-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide (trivial name: FUB-AKB48; FUB-APINACA; AKB48 N-(4-FUROBENZYL)); 1-(5-fluoropentyl)-N-(2-phenylpropan-2-yl)-1H-indazole-3-carboxamide (trivial names: 5F-CUMYL-PINACA; SGT-25); and (1-(4-fluorobenzyl)-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone (trivial name: FUB-144). Background Information and Evaluation of ‘Three Factor Analysis’ (Factors 4, 5, and 6) for Temporary Scheduling. Drug Enforcement Administration. Drug and Chemical Evaluation. Section Diversion Control Division. Springfield, VA, USA. Available at: https://www.regulations.gov/document?D=DEA-2019-0002-0004

23. UNODC Early Warning Advisory (EWA) Tox-Portal. Available at: https://www.unodc.org/tox/ - /login

40. 5F-MDMB-PICA. Early-Warning System on New Drugs 2 (EDND2). European Monitoring Centre for Drugs and Drug Addiction Database on New Drugs (EDND). Cais do Sodré, 1249-289 Lisbon, Portugal.

42. UNODC Early Warning Advisory on New Psychoactive Substances. Available at: https://www.unodc.org/LSS/Home/NPS

Annex 1: Report on WHO Questionnaire for Review of Psychoactive Substances

Refer to separate Annex 1: Report on WHO questionnaire for review of psychoactive substances
Annex 2: Investigations associated with the chemical analysis of 5F-MDMB-PICA (amongst other substances) including those reported in the published scientific literature

<table>
<thead>
<tr>
<th>Techniques</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP, TLC, NMR, ESI-MS, IR</td>
<td>Analysis of synthesised sample for pharmacological testing</td>
<td>(1)</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Analysis of reference material</td>
<td>(2)</td>
</tr>
<tr>
<td>IR, GC, EI-MS, NMR</td>
<td>Analysis of seized sample</td>
<td>(3)</td>
</tr>
<tr>
<td>EI-MS, IR, ESI-MS, IC</td>
<td>Analysis of collected sample</td>
<td>(4)</td>
</tr>
<tr>
<td>GC-MS, LC-PDA, LC-MS, ESI-MS, NMR</td>
<td>Analysis of seized sample</td>
<td>(5)</td>
</tr>
<tr>
<td>NR</td>
<td>Analysis of seized samples</td>
<td>(6)</td>
</tr>
<tr>
<td>GC-MS, LC-MS, NMR</td>
<td>Analysis of seized samples and biological specimens</td>
<td>(7, 8)</td>
</tr>
<tr>
<td>GC-MS, LC-MS, IM</td>
<td>Analysis of seized samples, biological specimens and metabolism study</td>
<td>(9)</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Analysis of hair samples</td>
<td>(10)</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Elucidation of structure-metabolism relationships using pooled human liver microsomes</td>
<td>(11)</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Analysis of biological specimens and seized samples</td>
<td>(12)</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Analysis of biological specimens</td>
<td>(13)</td>
</tr>
<tr>
<td>LC-MS, FC, NMR</td>
<td>Analysis of seized MDMB-CHMICA<sup>c</sup> samples and identification of 5F-MDMB-PICA as a contaminant</td>
<td>(14)</td>
</tr>
<tr>
<td>IM, LC-MS</td>
<td>Analysis of biological specimens related to “mass overdose” cases</td>
<td>(15)</td>
</tr>
<tr>
<td>Raman</td>
<td>Analysis of seized/collected samples</td>
<td>(16)</td>
</tr>
<tr>
<td>IR, GC-MS, GC-FID</td>
<td>Analysis of seized samples in New Zealand in 2017</td>
<td>(17)</td>
</tr>
<tr>
<td>LC-MS</td>
<td>In vitro metabolism assay and analysis of biological specimens</td>
<td>(18)</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Analysis of biological specimens</td>
<td>(19)</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Analysis of biological specimens, identification metabolites and in vitro hCB<sub>1</sub> receptor activation</td>
<td>(20)</td>
</tr>
</tbody>
</table>

^a As of July 2019.

^b MP: melting point; TLC: thin-layer chromatography; NMR: nuclear magnetic resonance spectroscopy; ESI: electrospray ionisation; MS: mass spectrometry (may involve high or low resolution approaches); IR: infrared spectroscopy; GC: gas chromatography; EI: electron ionisation; IC: ion chromatography; LC: liquid chromatography (various forms); PDA: photo diode array detection; FC: flash chromatography; IM: immunoanalysis; NR: details not reported; FID: flame ionisation detection.

^c MDMB-CHMICA: methyl (2S)-2-[[1-(cyclohexylmethyl)-1H-indole-3-carbonyl]amino]-3,3-dimethylbutanoate, a synthetic cannabinoid receptor agonist.
References

2. 5F-MDMB-PICA. Cayman Chemical. GC-MS data. Acquired 5 Dec 2016. Ann Arbor, Michigan, USA. Available at: https://www.caymanchem.com/gcms/20803-0494659-GCMS.pdf

