DRAFT PROPOSAL FOR THE INTERNATIONAL PHARMACOPOEIA:

CARBAMAZEPINUM - CARBAMAZEPINE

(July 2015)

DRAFT FOR COMMENT

Should you have any comments on the attached text, please send these to Dr Herbert Schmidt, Medicines Quality Assurance, Technologies, Standards and Norms, World Health Organization, 1211 Geneva 27, Switzerland; email: schmidt@who.int; fax: (+41 22) 791 4730 by 11 September 2015.

In order to speed up the process for receiving draft monographs and for sending comments, please let us have your email address (to bonnyw@who.int) and we will add it to our electronic mailing list.
Please specify if you wish to receive monographs.

© World Health Organization 2015

All rights reserved.

This draft is intended for a restricted audience only, i.e. the individuals and organizations having received this draft. The draft may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means outside these individuals and organizations (including the organizations' concerned staff and member organizations) without the permission of the World Health Organization. The draft should not be displayed on any website.

Please send any request for permission to:

Dr Sabine Kopp, Group Lead, Medicines Quality Assurance, Technologies, Standards and Norms, Department of Essential Medicines and Health Products, World Health Organization, CH-1211 Geneva 27, Switzerland.
Fax: (41-22) 791 4730; email: kopp$s@who.int.

The designations employed and the presentation of the material in this draft do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this draft. However, the printed material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

This draft does not necessarily represent the decisions or the stated policy of the World Health Organization.
SCHEDULE FOR THE ADOPTION PROCESS OF DOCUMENT QAS/15.608

Draft proposal for The International Pharmacopoeia: Carbamazepinum - Carbamazepine

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>First draft received from WHO Collaborating Centre</td>
<td>December 2014</td>
</tr>
<tr>
<td>Discussion at consultation on new medicines, quality control and laboratory standards</td>
<td>13–15 April 2015</td>
</tr>
<tr>
<td>First draft sent out for public consultation</td>
<td>July 2015</td>
</tr>
<tr>
<td>Presentation to WHO Expert Committee on Specifications for Pharmaceutical Preparations for adoption</td>
<td>October 2015</td>
</tr>
<tr>
<td>Further follow-up action as required</td>
<td></td>
</tr>
</tbody>
</table>
Draft proposal for The International Pharmacopoeia: Carbamazepinum - Carbamazepine

[Note from the Secretariat. It is proposed to revise the monograph on Carbamazepine in The International Pharmacopoeia.]

Changes from the current monograph are indicated in the text by insert or delete.

Comments are in particular sought as to whether the impurities listed under the section Impurities are degradation products or synthesis impurities.]

Molecular formula. \(C_{15}H_{12}N_2O\)

Relative molecular mass. 236.3

Graphic formula.

\[
\begin{array}{c}
\text{CONH}_2 \\
\end{array}
\]

Chemical name. 5\(H\)-Dibenz\([b,f]\)azepine-5-carboxamide; CAS Reg. No. 298-46-4.

Description. A white to almost yellowish white, crystalline powder; odourless or almost odourless.

Solubility. Practically insoluble in water and ether R; sparingly soluble in acetone; soluble in ethanol (~750 g/L) TS; freely soluble in dichloromethane.

Category. Antiepileptic drug.

Additional information. Carbamazepine exhibits polymorphism. The acceptable crystalline form is anhydrous polymorph form III\(^1\). It corresponds to carbamazepine RS.

Storage. Carbamazepine should be kept in a tightly closed container.

Requirements

Definition. Carbamazepine contains not less than 98.0% and not more than 102.0% of \(C_{15}H_{12}N_2O\), calculated with reference to the dried substance.

Identity tests

- Either test A or any two of tests B, C and D may be applied.

A. Carry out the examination as described under 1.7 Spectrophotometry in the infrared region. The infrared absorption spectrum obtained from the test substance without pretreatment is concordant with the spectrum obtained from carbamazepine RS or with the reference spectrum of carbamazepine.

B. See the test described below under "Related substances". The principal spot obtained with solution C corresponds in position, appearance, and intensity with that obtained with solution D.

B. Carry out test B.1 or, where UV detection is not available, test B.2.

B.1. Carry out the test as described under 1.14.1 Thin-layer chromatography using silica gel R6 as the coating substance and a mixture of 78 volumes of toluene R and 22 volumes of methanol R as the mobile phase. Apply separately to the plate 2 μL of each of the following three solutions, prepared using a mixture of equal volumes of ethanol (~750 g/L) TS and dichloromethane R. For solution (A) use 5 mg of the test substance per mL. For solution (B) use 5 mg of carbamazepine RS per mL. For solution (C) use 5 mg of carbamazepine RS and 5 mg of diazepam RS per mL. After removing the plate from the chromatographic chamber allow it to dry in air and examine the chromatogram in ultraviolet light (254 nm).

The principal spot obtained with solution (A) corresponds in position, appearance and intensity with that obtained with solution (B). The test is not valid unless the chromatogram obtained with reference solution (C) shows 2 clearly separated spots.

B.2 Carry out the test as described under 1.14.1 Thin-layer chromatography using the conditions described under test B.1 but using a plate containing silica gel R5 as the coating substance.

After removing the plate from the chromatographic chamber allow it to dry in air. Spray the plate with potassium dichromate TS3, then heat it at 105 °C for 15 minutes. Examine the chromatogram in daylight.

The principal spot obtained with solution (A) corresponds in position, appearance and intensity with that obtained with solution (B). The test is not valid unless the chromatogram obtained with reference solution (C) shows 2 clearly separated spots.

C. Expose a small amount of the test substance to ultraviolet light (365 nm); an intense blue fluorescence is observed.

C. Carry out the test as described under 1.14.4 High-performance liquid chromatography using the conditions given under “Assay”, Method B. The retention time of the principal peak in the chromatogram obtained with solution (1) corresponds to the retention time of the peak due to carbamazepine in the chromatogram obtained with solution (2).
D. Heat 0.1 g with 2 mL of nitric acid (~1000 g/L) TS in a water-bath for 3 minutes; an orange-red colour is produced.

Melting range. 189–193 °C.

Chlorides. For the preparation of the test solution boil 3.57 g in 50 mL of water for 10 minutes, cool, again adjust the volume, filter. To 25 mL of the filtrate add 10 mL of nitric acid (~130 g/L) TS and proceed as described under 2.2.1 *Limit test for chlorides*; the chloride content is not more than 0.14 mg/g.

Heavy metals. Use 1.0 g for the preparation of the test solution as described under 2.2.3 *Limit test for heavy metals*, Procedure 3; determine the heavy metals content according to Method A; not more than 10 µg/g.

Sulfated ash. Not more than 1.0 mg/g.

Loss on drying. Dry to constant weight at 105 °C; it loses not more than 5.0 mg/g.

Acidity or alkalinity. Stir 1.0 g with 20 mL of carbon-dioxide-free water R for 15 minutes and filter. To 10 mL of the filtrate add 0.1 mL of phenolphthalein/ethanol TS and titrate with carbonate-free sodium hydroxide (0.01 mol/L) VS; not more than 0.5 mL is required to obtain a pink colour. Add 0.15 mL of methyl red/ethanol TS and titrate with hydrochloric acid (0.01 mol/L) VS; not more than 1.0 mL is required to obtain a red colour.

Related substances. Carry out the test as described under 1.14.1 *Thin-layer chromatography*, using silica gel R6 as the coating substance and a mixture of 86 volumes of toluene R and 14 volumes of methanol R as the mobile phase. Apply separately to the plate 2 µL of each of 5 solutions in a mixture of equal volumes of ethanol (~750 g/l) TS and chloroform R containing (A) 0.050 g of the test substance per mL, (B) 0.050 mg of iminodibenzyl R per mL, (C) 5.0 mg of the test substance per mL, (D) 5.0 mg of carbamazepine RS per mL, and (E) 5.0 µg of carbamazepine RS per mL. After removing the plate from the chromatographic chamber, allow it to dry in air, spray it with potassium dichromate TS3, and examine the chromatogram in daylight. Any spot obtained with solution A, other than the principal spot, is not more intense than that obtained with solution B. Then heat the plate at 140 °C for 15 minutes and examine the chromatogram in ultraviolet light (254 nm). Any additional spot obtained with solution A is not more intense than that obtained with solution E.

Related substances. Carry out the test as described under 1.14.4 *High-performance liquid chromatography* using the chromatographic conditions given under “Assay, method B”.

Prepare the following solutions. For solution (1) dissolve about 75 mg of the test substance in 25 mL of methanol R, sonicate and dilute to 50 mL with water R. For solution (2) dilute 1 volume of solution (1) to 1000 volumes with a mixture of equal volumes of methanol R and water R. For solution (3) use a solution containing 10 µg of carbamazepine RS and 10 µg of carbamazepine impurity A per mL of a mixture of equal volumes of methanol R and water R.
Inject 20 µL of solution (3). The test is not valid unless the resolution between carbamazepine and carbamazepine impurity A RS is not less than 1.7.

Inject alternately 20 µL each of solution (1) and solution (2). Record the chromatograms for eight times the retention time of carbamazepine. In the chromatogram obtained with solution (1) the following impurities, if present, are eluted at the following relative retention with reference to carbamazepine (retention time about 9 minutes): impurity A about 0.9; impurity D about 2.1; and impurity E about 2.5.

In the chromatogram obtained with solution (1):

- the area of any peak corresponding to impurity A, when multiplied by a correction factor of 2.8, is not greater than 1.5 times the area of the principal peak in the chromatogram obtained with solution (2) (0.15%);
- the area of any peak corresponding to impurity D, when multiplied by a correction factor of 0.4, is not greater than twice the area of the principal peak in the chromatogram obtained with solution (2) (0.2%);
- the area of any peak corresponding to impurity E, when multiplied by a correction factor of 2.7, is not greater than 1.5 times the area of the principal peak in the chromatogram obtained with solution (2) (0.15%);
- the area of any other impurity peak, other than the principal peak, is not greater than the area of the principal peak in the chromatogram obtained with solution (2) (0.10%);
- the sum of the corrected areas of the peaks corresponding to impurity A, impurity D and impurity E and the areas of all other peaks, other than the principal peak, is not greater than 5 times the area of the principal peak in the chromatogram obtained with solution (2) (0.5%). Disregard any peak with an area less than 0.5 times the area of the principal peak obtained with solution (2) (0.05%).

Assay

- Either method A or B may be applied.

A. Dissolve about 0.1 g, accurately weighed, in sufficient ethanol (~750 g/L) TS to produce 100.0 mL. Dilute 10.0 mL of this solution to 100.0 mL with the same solvent, and again dilute 10.0 mL of this dilution to 100.0 mL with ethanol (~750 g/L) TS. Measure the absorbance (1.6) of a 1 cm layer of the resulting solution at the maximum at about 285 nm. Calculate the percentage content amount of C_{15}H_{12}N_{2}O in the substance being tested, using the absorptivity value of 49.0 (A^{1%}_{1cm} = 490), by comparison with carbamazepine RS, similarly and concurrently examined. In an adequately calibrated spectrophotometer the absorbance of the reference solution should be 0.49 ± 0.02.

B. Carry out the test as described under 1.14.4 High-performance liquid chromatography using a stainless steel column (25 cm x 4.6 mm) packed with particles of silica gel, the surface of which has been modified with chemically-bonded cyanopropyl groups (10
µm). As the mobile phase use a mixture of 30 volumes of tetrahydrofuran R, 120 volumes of methanol R, 850 volumes of water R, 0.2 volume of anhydrous formic acid R and 0.5 volume of triethylamine R.

Operate with a flow rate of 2.0 mL per minute. As a detector use an ultraviolet spectrophotometer set at a wavelength of about 230 nm.

Prepare the following solutions. For solution (1) dissolve about 10 mg of the test substance, accurately weighed, in 25 mL of methanol R, sonicate and dilute to 50.0 mL with water R. For solution (2) use carbamazepine RS to obtain a solution containing 0.2 mg per mL of equal volumes of methanol R and water R.

Inject alternately 20 µL each of solution (1) and (2). The assay is not valid unless the efficiency (N) is at least 5000, determined for the peak due to carbamazepine in the chromatogram obtained with solution (2).

Measure the areas of the peaks corresponding to carbamazepine obtained in the chromatograms from solution (1) and (2) and calculate the percentage content of carbamazepine (C\textsubscript{15}H\textsubscript{12}N\textsubscript{2}O) in the samples using the declared content of C\textsubscript{15}H\textsubscript{12}N\textsubscript{2}O in carbamazepine RS.

Impurities

A. 10,11-dihydro-5H-dibenzo[b,f]azepine-5-carboxamide (10,11-dihydrocarbamazepine)

B. 9-methylacridine.

\(^2\) A Nucleosil 100-10 CN column was found suitable.
C. (5H-dibenzob[f]azepin-5-ylcarbonyl)urea (N-carbamoylcarbamazepine),

D. 5H-dibenzo[b,f]azepine (iminostilbene)

E: 10,11-dihydro-5H-dibenzo[b,f]azepine (iminodibenzy1)