SCHEDULE FOR THE PROPOSED ADOPTION PROCESS OF DOCUMENT QAS/13.526: GOOD PHARMACOPOEIAL PRACTICES

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need for good pharmacopoeial practices (GPhP) stated during first international</td>
<td>28 February–1 March 2012</td>
</tr>
<tr>
<td>meeting of world pharmacopoeias, Geneva, and other related events with stakeholders</td>
<td>7–8 October 2012</td>
</tr>
<tr>
<td></td>
<td>9–12 October 2012</td>
</tr>
<tr>
<td></td>
<td>21–22 October 2012</td>
</tr>
<tr>
<td>First draft of good pharmacopoeial practices (GPhP) sent out for comment (QAS/12.516)</td>
<td>17 October 2012</td>
</tr>
<tr>
<td>Compilation of feedback and comments received</td>
<td>November–December 2012</td>
</tr>
<tr>
<td>Circulation of GPhP to drafting group on good pharmacopoeial practices with</td>
<td>18 January 2013</td>
</tr>
<tr>
<td>comments, as well as Concept paper on scope and background (QAS/13.518)</td>
<td></td>
</tr>
<tr>
<td>Formation of initial drafting group (IDG), including representatives from each</td>
<td>February 2013</td>
</tr>
<tr>
<td>pharmacopoeia, as per self-nomination, to review draft concept paper via</td>
<td></td>
</tr>
<tr>
<td>teleconference call</td>
<td></td>
</tr>
<tr>
<td>Preparation of new skeleton and first draft with more detailed structure</td>
<td>February 2013</td>
</tr>
<tr>
<td>Mailing to world pharmacopoeias for additional feedback, preparation of draft</td>
<td>February–March 2013</td>
</tr>
<tr>
<td>chapters by drafting group</td>
<td></td>
</tr>
<tr>
<td>Compilation of feedback</td>
<td>April 2013</td>
</tr>
<tr>
<td>Discussion of draft working document on good pharmacopoeial practices at second</td>
<td>18–19 April 2013</td>
</tr>
<tr>
<td>international meeting of world pharmacopoeias, New Delhi, India</td>
<td></td>
</tr>
<tr>
<td>Revised version of GPhP prepared and mailed out for comments to all</td>
<td>28 May 2013</td>
</tr>
<tr>
<td>pharmacopoeias, for feedback to be provided to lead pharmacopoeias for each</td>
<td></td>
</tr>
<tr>
<td>chapter</td>
<td></td>
</tr>
<tr>
<td>Discussion of feedback during informal consultation to discuss new medicines,</td>
<td>12–14 June 2013</td>
</tr>
<tr>
<td>quality control and laboratory standards</td>
<td></td>
</tr>
<tr>
<td>Revision of each chapter by each GPhP lead pharmacopoeia</td>
<td>28 June 2013</td>
</tr>
<tr>
<td>Event Description</td>
<td>Date</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>Mailing of each chapter to WHO for compilation into a revised working document</td>
<td>July 2013–December 2013</td>
</tr>
<tr>
<td>Presentation to forty-eighth meeting of the WHO Expert Committee on Specifications for Pharmaceutical Preparations</td>
<td>October 2013</td>
</tr>
<tr>
<td>Compilation of all various chapters received from the lead pharmacopoeias and mailing out to all world pharmacopoeias</td>
<td>January 2014</td>
</tr>
<tr>
<td>Compilation of all comments received</td>
<td>March 2014</td>
</tr>
<tr>
<td>Discussion during the 3rd international meeting of world pharmacopoeias in London, United Kingdom</td>
<td>10–11 April 2014</td>
</tr>
<tr>
<td>Revised version of GPhP prepared and mailed out for comments to all pharmacopoeias, for feedback to be provided to each chapter</td>
<td>July 2014</td>
</tr>
<tr>
<td>Compilation of all comments received</td>
<td>22 September 2014</td>
</tr>
<tr>
<td>Following feedback and discussions during two telephone conference calls of the subgroup working on the Technical Annex to the future GPhP the Ph.Eur. Secretariat prepared a significantly shortened draft which is circulated for comments</td>
<td>23 September 2014</td>
</tr>
<tr>
<td>Compilation of all comments received</td>
<td>30 September 2014</td>
</tr>
<tr>
<td>Discussion during the 4th international meeting of world pharmacopoeias in Strasbourg, France</td>
<td>8–10 October 2014</td>
</tr>
<tr>
<td>Briefing on progress to forty-ninth meeting of the WHO Expert Committee on Specifications for Pharmaceutical Preparations</td>
<td>13–17 October 2014</td>
</tr>
<tr>
<td>Continuation of consultation process with world pharmacopoeias</td>
<td>October 2014–January 2015</td>
</tr>
<tr>
<td>Continuation of consultation process with world pharmacopoeias and worldwide</td>
<td>Mid-January–mid-March 2015</td>
</tr>
<tr>
<td>Compilation of all comments received</td>
<td>10–15 March 2015</td>
</tr>
<tr>
<td>Event</td>
<td>Date</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Discussion of feedback during the 5th international meeting of world</td>
<td>20–22 April 2015</td>
</tr>
<tr>
<td>pharmacopoeias in Washington, USA</td>
<td></td>
</tr>
<tr>
<td>Continuation of consultation process with world pharmacopoeias and</td>
<td>May–August 2015</td>
</tr>
<tr>
<td>worldwide</td>
<td></td>
</tr>
<tr>
<td>Compilation of all comments received</td>
<td>10 September 2015</td>
</tr>
<tr>
<td>Discussion during the 6th international meeting of world pharmacopei</td>
<td>21–23 September 2015</td>
</tr>
<tr>
<td>s in Sou Zhou, People’s Republic of China</td>
<td></td>
</tr>
<tr>
<td>Presentation to the 50th meeting of the WHO Expert Committee on</td>
<td>12–16 October 2015</td>
</tr>
<tr>
<td>Specifications for Pharmaceutical Preparations</td>
<td></td>
</tr>
<tr>
<td>Any follow-up action as necessary</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

1. BACKGROUND

2. PURPOSE AND SCOPE OF GOOD PHARMACOPOEIAL PRACTICES

3. GLOSSARY

4. BENEFITS OF GOOD PHARMACOPOEIAL PRACTICES

5. IMPLEMENTATION

6. MONOGRAPH DEVELOPMENT

 6.1 General considerations

 6.1.1 Adoption of pharmacopoeial standards

 6.1.2 Open and transparent process

 6.1.3 Harmonization

 6.1.4 Legal recognition

 6.1.5 Compliance with a pharmacopoeial monograph

 6.1.6 Analytical requirements

 6.1.7 Acceptance criteria

 6.2 Technical guidance

 6.2.1 Monographs for pharmaceutical substances

 6.2.2 Monographs for finished products

7. ANALYTICAL TEST PROCEDURES AND METHODS (ANALYTICAL METHOD)
GOOD PHARMACOPOEIAL PRACTICES

2. BACKGROUND

Today there are 49 pharmacopoeias in the world (according to the World Health Organization (WHO) List of Pharmacopoeias, 2013). There are differences across these pharmacopoeias, including the use of technology reflected in each pharmacopoeia as well as the breadth of medicines and other articles included. Pharmacopoeias are embedded in their respective national or regional regulatory environment and reflect specifications approved by the regulatory body.

Harmonization efforts for pharmacopoeias started more than a century ago. WHO was mandated with its Secretariat in 1948. This led to the creation of The International Pharmacopoeia, which was the first global pharmacopoeial activity. Many others followed.

Pharmacopoeial harmonization has traditionally been defined as “when a pharmaceutical substance or product tested by the document's harmonized procedure yields the same results and the same accept/reject decision is reached.” The purpose of good pharmacopoeial practices (GPhP) is for participating pharmacopoeias to move towards becoming more similar or aligned over time. This also is known as “convergence.” This concept takes into consideration that different countries and regions may have different approaches. These differences, however, should not impede achieving the common goal of access by the population to safe, effective, quality and affordable medicines.

This document uses the term “harmonization” for these approaches.

Developments in science and medical practice, globalization and the presence of spurious/falsified/falsely labelled/counterfeit (SFFC) products require pharmacopoeias to continuously revise their monographs and other text. Harmonization and reinforced
collaboration among pharmacopoeial committees and regulators, supported by adequate interaction with industry, will assist in facing new challenges and resource constraints.

A first initiative to reopen the discussion on international harmonization of quality control specifications on a global scale was taken in a side meeting of the 10th International Conference of Drug Regulatory Authorities (ICDRA) entitled: "Pharmacopoeial Specifications – Need for a Worldwide Approach?" in Hong Kong on 24 June 2002. This led to further discussions among regulators during the 11th ICDRA meeting held in Madrid in 2004.

Other international events during the following years enabled discussions with and among pharmacopoeias on this topic.

The main emerging suggestion from all these events was the development of GPhP to encourage harmonization facilitated by WHO.

It was agreed to develop the GPhP under the auspices of the WHO Expert Committee on Specifications for Pharmaceutical Preparations, benefiting from its well-established international standard-setting processes and procedures. These processes include an international wide consultation process, which enables the participation of all stakeholders and users in the development process. The final guidance would then be presented, in line with the procedure, to WHO’s 194 Member States and pharmacopoeial authorities.

2. PURPOSE AND SCOPE OF GOOD PHARMACOPOEIAL PRACTICES

A pharmacopoeia’s core mission is to protect public health by creating and making available public standards to help ensure the quality of medicines The primary objective of the GPhP guidance is to converge approaches and policies in establishing pharmacopoeial standards, which will support regulatory authorities in controlling the quality of pharmaceutical ingredients, their finished pharmaceutical products (FPP) and
related materials and will provide a tool by which the user or procurer can make an
independent judgement regarding quality, thus safeguarding the health of the public.

These GPhP describe a set of principles that provides guidance for national
pharmacopoeial authorities (NPAs) and regional pharmacopoeial authorities (RPAs)
which facilitates the appropriate design, development and maintenance of
pharmacopoeial standards.

3. GLOSSARY

[Note from the Secretariat: this section will need to be further developed and is intended
to include the various terms used in the national and regional pharmacopoeias.]

active pharmaceutical ingredient. A substance used in a finished pharmaceutical
product, intended to furnish pharmacological activity or to otherwise have direct effect in
the diagnosis, cure, mitigation, treatment or prevention of disease, or to have direct effect
in restoring, correcting or modifying physiological functions in human beings.

dosage form. The form of the completed pharmaceutical product, e.g. tablet, capsule,
elixir or suppository.

finished pharmaceutical product. A finished dosage form of a pharmaceutical product
that has undergone all stages of manufacture, including packaging in its final container
and labelling.

period of use. Utilization period of multidose products after opening, reconstitution or
dilution of a solution, e.g. an antibiotic injection supplied as a powder for reconstitution.

pharmaceutical substance. Any substance of a defined quality used in the production of
a pharmaceutical product, but excluding packaging materials. This includes active
pharmaceutical ingredients and pharmaceutical excipients.
shelf life. The period of time during which a pharmaceutical product, if stored correctly, is expected to comply with the specification as determined by stability studies on a number of batches of the product. The shelf life is used to establish the expiry date of each batch.

4. BENEFITS OF GOOD PHARMACOPOEIAL PRACTICES

GPhP are designed to facilitate collaboration among pharmacopoeias, leading to possibilities for work sharing, harmonization of standards and the recognition of published standards between NPAs and RPAs.

In addition to the above the establishment of GPhP may result in the following:

- strengthening of global pharmacopoeial cooperation;
- providing stakeholders with a better understanding of how pharmacopoeial standards are developed and maintained in a transparent manner;
- improving cooperation between NPAs/RPAs and stakeholders (e.g. regulators, pharmaceutical industry) with a view to facilitating the harmonization of pharmacopoeial standards and reducing duplication of work;
- increasing access to and the availability of affordable, quality medicines.

By establishing common practices, GPhP can facilitate adoption of the standards from one pharmacopoeia by another pharmacopoeia (adopt/adapt), proactively harmonizing the requirements with considerably less effort than is currently needed.

GPhP should ultimately enable harmonization\(^1\) of pharmacopoeial standards.

\(^1\) In the *WHO Good Review Practices Guidelines for Regulatory Authorities*, convergence is defined as follows: “Regulatory Convergence (APEC Regulatory Harmonization Steering Committee (RHSC) definition): Represents the process whereby regulatory requirements, approaches and systems become more similar or aligned over time as a result of the adoption of internationally recognized technical guidances, standards and best practices” (WHO Technical Report Series, No. 992, 2015, Annex 9).
5. IMPLEMENTATION

While the implementation of the GPhP by NPAs and RPAs is voluntary it is recommended and encouraged as a high level of participation will result in greater benefit to the stakeholders and ultimately to patients.

6. MONOGRAPH DEVELOPMENT

Development of a monograph requires consideration of information and candidate materials. This information may come from donors, literature, various publicly available material, from other pharmacopoeias, or may be generated within the laboratory resources of a pharmacopoeia. The draft text should be displayed for public comments with sufficient time allowed for review and input by stakeholders.

Pharmacopoeias are encouraged to conform, where possible, to the work of harmonization initiatives (e.g. WHO, International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) and the Pharmacopoeial Discussion Group (PDG)).

6.1 General considerations

Pharmacopoeial monographs provide an important tool for assurance of the quality of marketed pharmaceutical ingredients and products through testing of their quality. They generally cover chemical, biological and herbal medicines and their ingredients, which have either been approved by national regulatory authorities or are otherwise legally marketed. Some pharmacopoeias also include standards for items such as medical devices, nutritional ingredients and products.
Specifications in pharmacopoeias are one facet of the overall control of the quality of FPP and their constituents (active substances and excipients). Monographs provide publicly available standards that a product or a component of a product is expected to meet during its shelf life. Thus, a substance should be able to demonstrate compliance with a pharmacopoeial monograph up to the point at which it is used to prepare a finished dosage form. An FPP should demonstrate compliance with a monograph, if available, throughout its shelf life. Pharmacopoeial specifications are used within pharmaceutical product marketing authorization systems and by manufacturers, suppliers, purchasers and those acting on behalf of patients.

Before developing a monograph it is important to consider the specifications (tests and acceptance criteria) needed to assure the quality of a given substance or pharmaceutical product. Specifications that limit market access by, for example, favouring one manufacturer to the exclusion of others should be avoided.

The ICH guidelines Q6A (*Specifications: test procedures and acceptance criteria for new drug substances and new drug products: chemical substances*) could be used as a basis. Whenever possible, specifications should be applied consistently in monographs across all participating pharmacopoeias, regardless of whether the requirements are specified in the specific monograph or are incorporated in general monographs.

Additional tests might be added by NRAs and RPAs depending on, e.g. national/regional regulations.

Pharmacopoeial standards allow independent testing and are a critical part of the “safety net” of standards that help ensure the quality, safety and efficacy of medicines. They are closely allied with good manufacturing practice (GMP) standards.

Pharmacopoeial standards should be available for medicines and their ingredients and associated materials at an appropriate time to support and benefit patients through the availability of medicines with consistent quality. They are usually based on the shelf-life
specifications approved by regulatory authorities or on the specifications of unlicensed products (e.g. compounded and other preparations, as defined by national or regional regulations).

The monographs may employ various validated analytical procedures for the tests that are designed to be feasible for a competent analyst to perform using established technologies and facilities.

Pharmacopoeial standards are public standards that are science-based and data-driven and based on sound analytical measurement and accompanying validation data.

Pharmacopoeias respect the intellectual property of donors and recognize the importance of maintaining the confidentiality of proprietary third-party information. Pharmacopoeias endeavour to work collaboratively with regulators (including medicines regulatory authorities, official medicines control laboratories and inspectorates), the pharmaceutical industry (including manufacturers and trade associations), academia, health-care professionals and patient advocacy groups (as appropriate), and other stakeholders in the development of public standards.

6.1.1 Adoption of pharmacopoeial standards

(a) Text in a pharmacopoeial monograph or general chapter is approved by an expert body of the pharmacopoeia, following publicly available rules and procedures. This includes public consultation and the application of conflict of interest and confidentiality rules.

(b) Reference standards cited in a pharmacopoeia also are approved by a pharmacopoeial expert body.

2 In the case of The International Pharmacopoeia specifications are developed for those medicines included in The Essential Medicines List (EML) and those that are of major public health interest, including, e.g. those that are on the Expression of interest (EOI) for prequalification by WHO.
6.1.2 Open and transparent process

Pharmacopoeial standards are based on current scientific knowledge and reflect the quality of substances and products available.

Pharmacopoeias ensure openness and transparency throughout the development and revision of monographs and other texts, which includes:

(i) engaging stakeholders in the routine development and revision of pharmacopoeial standards through adequate and timely public notice and comment;

(ii) engaging stakeholders in the timely development and revision of standards to address major public health concerns;

(iii) general transparency of the pharmacopoeial approaches, including making work programmes publicly available;

(iv) close interactions with other harmonization activities such as ICH;

(v) good communication with stakeholders through forums, workshops and other interactions;

(vi) timely response to user enquiries;

(vii) opportunities for user training and education on the pharmacopoeial process and finalized standards;

(viii) rapid correction of errors published in compendial text, when necessary;

(ix) timely and appropriate revision and/or withdrawal of compendial standards, when necessary. (The legal status of monographs that have been withdrawn will depend on the national regulatory framework.)

Pharmacopoeial standards are based on current scientific knowledge and reflect the quality of substances and products available.
6.1.3 Harmonization

Pharmacopoeias should harmonize standards wherever possible through monographs and general chapters. Harmonization may occur through several processes including but not limited to: adoption/adaptation of existing standards; development of a new standard through coordinated consideration (prospective harmonization); revision of a standard between two or more pharmacopoeias (bilateral or multilateral harmonization); creation or revision of standards through a coordinating body (e.g. PDG); or other approaches.

6.1.4 Legal recognition

Pharmacopoeial monographs may acquire legal status and then provide a basis for enforcement depending on applicable national or regional requirements.

6.1.5 Compliance with a pharmacopoeial monograph

Any substance or drug product subject to a monograph must comply with all of the mandatory requirements within the pharmacopoeia throughout its period of use or shelf life.

The assays and tests described are the official methods upon which the standards of the pharmacopoeia depend. The analyst may not be precluded from employing alternative methods depending on national and regional legislation. A validation of the alternative analytical procedure should be done to show at least an equivalent performance to the analytical procedure described in the monograph. Subject to regulatory approval an alternative method of analysis may be used for routine analytical purposes. In this case it is necessary to provide a rationale for its inclusion, stability and validation data and data comparing results obtained using the pharmacopoeial method and the alternative method.

In case of doubt or dispute the official pharmacopoeial methods prevail and are alone authoritative.
6.1.6 Analytical requirements

Pharmacopoeial methods and limits are set with the intention that they should be used as compliance requirements and not as requirements to guarantee total quality assurance. To achieve maximum benefit from the examination of a product the recommended approach is that, wherever possible, a variety of different analytical techniques should be employed, considering the feasibility and affordability of the methods.

6.1.7 Acceptance criteria

Acceptance criteria are numerical limits, ranges or other suitable measures for acceptance of the results of analytical testing to allow determination of pass/fail criteria. Acceptance criteria indicated in a pharmacopoeial monograph allow for analytical error, for unavoidable variations in manufacturing processes and for deviations to an extent considered acceptable under practical storage conditions. They provide standards with which substances or products must comply throughout their shelf life or period of use. Different acceptance criteria may be required depending on the national or regional regulatory authorities.

6.2 Technical guidance

The technical guidance provided in this section shall be considered as the minimal requirements agreed between the participating pharmacopoeias. They do not preclude national or regional pharmacopoeias from supplementing such requirements in their monographs due to national/regional regulations.

6.2.1 Monographs for pharmaceutical substances

Prior to the preparation of any monograph it is essential to gather as much information as possible on the substance in question.
In particular it is necessary to ascertain:

- whether the substance is of natural, synthetic or semisynthetic origin;
- whether the substance is a mixture or a single entity;
- whether different entities (acid, base, salt, etc.) are available;
- the method(s) of preparation of the substance, if possible;
- the intrinsic properties of the substance that contribute to its identity and classification, such as solubility or optical rotation;
- whether there are differences in physical form, for example, crystallinity or polymorphism since these properties may affect the behaviour of the substance;
- whether a single optical isomer (e.g. enantiomer) as well as mixtures of isomers (e.g. racemate) are available;
- whether anhydrous or different hydrates are available.

Substances that are to be described in a monograph may be members of a group of very similar substances. A master monograph may be drafted stating the attributes common to all members of the group and that can be used to identify single members of the group.

6.2.1.1 Monograph title

The International Nonproprietary Name (INN) or modified INN (INNM) established by WHO should be considered for use wherever it is available, while recognizing that individual pharmacopoeias may apply their own nomenclature policies.

6.2.1.2 General information to define the pharmaceutical substance

A pharmacopoeial monograph includes information regarding the pharmaceutical substance, such as:

- graphic formula;
- empirical/molecular formula and relative molecular mass (the latter is calculated based on the figures of the International Table of Relative Atomic Masses considering, where appropriate, the degree of hydration);
• Chemical Abstracts Service (CAS) registry number, if available;
• chemical name;
• state of hydration, where relevant.
• the possible existence of isomers so as to be able to specify either which isomer is present or to state that the substance is a mixture of isomers;
• in the case of an optical isomer, the absolute configuration is given by the R/S system at the asymmetrical centre(s) or any other appropriate system (e.g. for carbohydrates and amino acids);
• ascertaining the state of hydration or solvation by an appropriate technique, so as to distinguish clearly between substances which are well-defined hydrates and solvates and those that contain variable quantities of solvent(s):
 – for well-defined hydrates or solvates, water or solvent content ranges are specified,
 – for substances containing variable amounts of water or solvents, only a maximum content is given,
 – where substances exist as both non-hydrated (or non-solvated) and hydrated (or solvated) forms, and if all these forms are used and can be clearly distinguished, they may be treated as individual substances.

6.2.1.3 Content
Assay limits are specified between which the content falls. In certain instances the content may be given only as a lower limit. The assay limits take account of the precision of the method as well as the acceptable purity of the substance. Assay limits are normally expressed with reference to the dried, anhydrous and/or solvent-free substance.

In setting limits for the active ingredient content, account is taken of:
the method of preparation which determines the degree of purity that may be reasonably required;

- the precision and accuracy of the analytical method;

- where a separation technique is employed both for the test for related substances and the assay, content limits are set taking into account the maximum permitted amount of impurities and the analytical error;

- the evaluation of the extent of degradation during storage (since the limits are intended to apply throughout the shelf life of the substance and not just at the time of release testing);

- a sufficient number of experimental results obtained on several batches (at least 3), if possible, of different origins and ages.

6.2.1.4 Qualitative properties of the pharmaceutical substance

The statements under this heading are not to be interpreted in a strict sense and are not to be regarded as analytical requirements. Caution statements may be included here.

The principal items that may be referred to are the following:

- appearance;

- solubility;

- stability factors;

- hygroscopicity;

- solid-state properties;

- other characteristics, as necessary.

6.2.1.5 Identification

The tests given in the identification section are not designed to give a full confirmation of the chemical structure or composition of the substance. They are intended to give confirmation, with an acceptable degree of assurance, that the substance is the one stated on the label. The specificity of the identification should be such that pharmaceutical substances exhibiting similar structures can be distinguished. When an identification series is being investigated it is desirable that other similar substances, whether or not
they are the subject of monographs of the pharmacopoeia, are examined at the same time
to ensure that a particular combination of tests within a series will successfully
distinguish one similar substance from another. False positive reactions caused by the
presence of known impurities should be avoided.

Some of the purity tests in a monograph may also be suitable for identification purposes,
possibly in a modified form. A system of cross-references to the section(s) can be
exploited. This is particularly relevant in cases where distinction between closely related
materials depends on properties that are also parameters in purity or composition control.
In some cases an organic impurities procedure may be introduced to differentiate the
analyte from similar, common, dangerous adulterants.

In the case of a group monograph identification of the type of substances may be
supplemented by selective but discriminating tests to identify individual members of the
group.

6.2.1.6 Impurities and other tests
Certain tests may apply to special grades (parenteral, dialysis solutions, etc.) or a test may
have a special limit for a particular use: the particular application of a test/limit is
indicated within the test.

6.2.1.6.1 Organic impurities
This section is principally directed at limiting impurities in chemical substances.

In the interest of transparency, information may be included on: the impurities controlled
by a test; the approximate equivalent (percentage, ppm, etc.) of the prescribed limit in
terms of the defined impurities or class of impurities.

Monographs should include tests and acceptance criteria for impurities that are likely to
occur in substances used in approved medicinal products, insofar as the necessary
information and samples (substance and impurities) are available from the producers.
Monographs on organic chemicals usually have a test entitled “Related substances” (or a test with equivalent purpose under a different title), designed to control related organic impurities. Impurities to be controlled include intermediates and by-products of synthesis, and co-extracted substances in products of natural origin and degradation products.

Monographs on active pharmaceutical ingredients (APIs) should take account of the principles defined in ICH guideline Q3A (R2) (*Impurities in New Drug Substances*) or comparable guidelines and follow regulatory decision-making. Products of fermentation and semi-synthetic products derived therefrom should be limited applying the same principles but be covered by thresholds considered appropriate for these substances. The same principle applies to excipients.

Unusually potent or toxic impurities. In addition to the above-mentioned requirements, impurities that are unusually potent or produce toxic or unexpected pharmacological effects need to be specifically considered. In this context requirements for genotoxic impurities may be followed.

Monographs frequently have to be designed to cover different impurity profiles because of the use of different synthetic routes and purification procedures.

For pharmacopoeial purposes the objective of a purity test using a separation method will usually be the control of impurities derived from one or more known manufacturing processes and decomposition routes. However, the experimental conditions, especially the detection system, are chosen for the test, so as not to make it unnecessarily narrow in scope.

Where monographs include a chromatographic method this should provide a reliable means of locating all specified impurities on the chromatogram. Identification of unspecified impurities is necessary if a correction factor is to be applied.
6.2.1.6.2 **Inorganic impurities**

Inorganic impurities include reagents, ligands and catalysts, elemental impurities, inorganic salts and other materials such as filter aids (where relevant).

Where known impurities are present, these are typically covered by specific tests.

6.2.1.6.3 **Residual solvents**

Residual solvents need to be controlled, for example, as outlined in the ICH Guideline *Impurities: Guideline For Residual Solvents* (Q3C).

6.2.1.6.4 **Other tests**

The following tests should be considered but are not limited to:

- foreign anions and/or cations;
- loss on drying;
- semi-micro determination of water (Karl Fischer);
- micro determination of water (coulometric titration);
- sulfated ash/residue on ignition;
- residue on evaporation
- sterility;
- microbiological purity;
- bacterial endotoxins.

6.2.1.7 **Assay**

Assays are included in monographs unless, for example:

- all the foreseeable impurities can be detected and limited with sufficient precision;
- certain quantitative tests, similar to assays, are carried out with sufficient precision;
- the tests performed are sufficient to establish the quality of the substance (usually a non-active ingredient, for example, ethanol and water).
In certain cases more than one assay may be necessary when:

- the substance to be examined consists of a combination of two parts that are not necessarily present in absolutely fixed proportions, so that the assay of only one of the two constituents does not make it possible to determine correctly the content of the substance as a whole;

- the results of the quantitative tests do not fully represent the therapeutic activity, in which case a biological assay is included.

In the case of well-defined salts, the assay of only one of the components, preferably the pharmacologically active component, is generally considered sufficient.

6.2.2 Monographs for finished products

In some pharmacopoeias general monographs will include analytical methods and acceptance criteria for all of the general tests required for a given pharmaceutical form.

General tests that are applied to a specific pharmaceutical form (and are not specific to a particular formulation) may be grouped together, for example, uniformity of mass/content, friability and disintegration as applied to a tablet testing). These tests may be included in a general monograph for a pharmaceutical form, in this example, tablets, as the test procedures are the same for all tablets.

Specific tests group together those procedures that are required to provide evidence that an FPP is of a suitable quality and are specific to a particular pharmaceutical dosage form. Examples include identification, related substances, assay and dissolution (for an FPP tablet monograph). Specific tests are measures of the purity, composition and drug release; these tests are dependent on the active substance.

Prior to the preparation of any monograph it is essential to gather as much information as possible on the product in question. In particular it is necessary to ascertain:

- if the FPP contains a mixture or a single drug substance;
• if the FPP covers different entities (acid, base, salt, etc.);
• in cases where the drug substance exhibits polymorphism, if the crystallographic form of the entity should be identified in the FPP monograph;
• if the FPP is available in different strengths, whether all strengths can be controlled under one monograph.

6.2.2.1 Monograph title

The titles of monographs for FPPs combine the name of the drug substance and the pharmaceutical dosage form.

The drug substance name should be based on the INN or national name, wherever it is available (the common name should be used where an INN or national name is not available). It is supplemented, when required, by the INNM. Where possible the INN should be used in the monograph title as this will reflect the expression of strength of an FPP, as recommended by ICH guidelines. The name is followed by the nationally or regionally accepted pharmaceutical dosage form taxonomy (or published standard term).

For FPPs containing more than one drug substance (“combination products”), the individual INNs should be used where possible. Combination Names (Co-names) may exist in national pharmacopoeias for prescribing purposes.

6.2.2.2 General information to define the finished pharmaceutical product

Such information may include elements relating to the API, an expression of the content and other essential features of the dosage form. An appropriate reference to the relevant general monographs may be included.

The following should be observed:
• the drug substance will be referred to in this section; it is not necessary to reproduce the defining information found in the drug substance monograph within this section of the FPP monograph (i.e. chemical name, etc.);
• any reference to producing a salt of the active moiety in situ during the manufacture of the FPP should be made in this section;
• the definition only refers to the name of the drug substance; where the content is expressed in terms other than those described in the title of the monograph, the limits stated under “Content” (below) should reflect the label claim.

6.2.2.3 Content

Assay limits are specified between which the content of the drug substance in the FPP must fall. Limits for each active substance (if more than one) or individual components are included. The assay limits must take account of the precision of the method as well as the strength of the FPP. Assay limits are normally expressed with reference to the active moiety or the label claim in accordance with the national or regional requirements.

Limits should be justified and account be taken of:
• the strength of the FPP;
• the stability of the active substance in a specific FPP.

In the case of antibiotics determined by microbiological assay, the content limit is expressed in International Units (IU); where these exist a content limit is given in terms of a range, for example: “The precision of the assay is such that the fiducial limits of error are not less than 95% and not more than 105% of the estimated potency. The upper fiducial limit of error is not less than 97.0% and the lower fiducial limit of error is not more than 110.0% of the stated number of IU”.

6.2.2.4 Identification

The tests given in the identification section are not designed to give a full confirmation of the chemical structure or composition of the active ingredient in the product. They are intended to give confirmation, with an acceptable degree of assurance, that the active substance(s) in the product is/are the one(s) stated on the label. Special attention must be given to the sample preparation to ensure that the active substance is adequately extracted from the sample matrix.
630 The minimum number of tests should be included, commensurate with providing
631 adequate assurance of identity. For example, the monograph may contain at least two
632 procedures to identify the active substance(s) in a pharmaceutical dosage form; one test
633 may be sufficient if the technique used is considered to be a fingerprint of the active
634 moiety (e.g. infrared absorption spectrophotometry).
635
636 6.2.2.5 Impurities and other tests
637 This section should include all of the specific tests that are required to prove the quality
638 of the specific FPP.
639
640 The “Tests” section is intended to:
641 limit the impurities within the FPP. This includes degradation impurities
642 throughout the shelf life of the FPP and impurities that occur due to the
643 manufacturing process. In certain circumstances it is necessary to control FPPt
644 impurities resulting from the synthesis of the drug substance;
645 • ensure the homogeneity of the active substance(s) from dose to dose within the
646 FPP;
647 • take account of the influence of the sample matrix to restrict the release of the
648 active moiety in the FPP (i.e. a dissolution test in a monograph for tablets);
649 • limit the pyrogenic content of a parenteral FPP (i.e. a test for bacterial endotoxins
650 or a monocyte activation test).
651
652 6.2.2.5.1 Impurities: Title of test(s)
653 Where the test is intended to control specified and unspecified impurities the title of the
654 test should be related substances or related compounds, or similar, in line with national or
655 regional practices.
656
657 Where the test is intended to control one or a limited number of specified impurities the
658 title of the test should indicate the impurity(ies) controlled.
6.2.2.5.2 Related substances (or Related compounds)

Further to the section on pharmaceutical substance monographs the following should be considered for related substances tests of FPP monographs:

- specific, quantitative techniques (i.e. HPLC) are preferred;
- non-specific or non-quantitative techniques should be used only if a specific method is not available or suitable;
- methods should be developed with the aim of controlling degradation products and impurities. In certain circumstances it is necessary to control impurities from synthesis of the drug substance in the FPP (for example, if they are known to be toxic or when they are detected in the test for related substances at a level greater than the limit for unspecified impurities);
- impurities being limited above the limit for unknown impurities should be identified using a reference standard or other suitable techniques.

The principles outlined in ICH guideline Q3B (R2) (Impurities in New Drug Products) could be used as a starting point.

6.2.2.6 Performance testing

Depending on the dosage form adequate performance testing may need to be included in the monograph. Such tests may include, but are not limited to, dissolution or deposition of the emitted dose.

6.2.2.7 Uniformity

Pharmaceutical preparations presented in single-dose units should comply with the test(s) as prescribed in the specific dosage form monograph. Acceptance criteria will be specified regionally for a specific product/pharmaceutical form.

6.2.2.8 Other tests

The following tests should be considered, but are not limited to:
• sterility;
• bacterial endotoxins;
• microbiological quality;
• if necessary, excipients such as antioxidants and antimicrobial agents.

6.2.2.9 Products of natural origin
Attention needs to be paid to the requirements in the different territories for minimizing the risk of transmitting animal spongiform encephalopathy agents via human and veterinary medicinal products.

6.2.2.10 Assay
The assay quantifies the amount of active substance in the FPP. It may also quantify certain excipients such as preservatives, depending on national and regional legislation. Where possible the method used should be harmonized with that in the active substance or excipient monograph, but this may not be possible because of the sample matrix.

Assays are included in all FPP monographs unless certain quantitative tests, similar to assays, are carried out with sufficient precision (for example, uniformity of content, where a mean of individual results could be considered an accurate assay).

In certain cases more than one assay may be necessary, for example:
• where the FPP contains two, or more, active substances.

For products such as antibiotics the results of the quantitative tests do not fully represent the therapeutic activity, in which case a microbiological assay and a test for composition are included.

The assay quantifies the amount of the active substance in the FPP and it avoids interference with the sample matrix. Specific assays should be used where possible, for example, liquid or gas chromatography. Specific assays remove interference from
excipients (formulation matrix) which could lead to significant errors when using non-
specific assays.

The purpose of the assay test is to quantify drug substance content. Whenever possible, a
stability-indicating procedure should be used for the assay. Generally, chromatographic
procedures are preferred. When a non-stability-indicating assay is proposed, a separate
stability-indicating impurity procedure should be provided.

7. ANALYTICAL TEST PROCEDURES AND METHODS
 (ANALYTICAL METHOD)

Analytical test procedures and methods are employed to establish quality aspects such as
identity, purity and content of drug substances and drug products. An analytical method
and/or technique specified in a pharmacopoeia should be robust, reliable, accurate,
precise, sensitive, specific and use readily available materials and equipment.

A pharmacopoeia provides physical, physicochemical and chemical methods for the
analysis of pharmaceutical substances and drug products (finished dosage forms). The
type of method applied for analysis depends on the nature of the substance or product.

The principles of method validation as, e.g. [Ref: to WHO and ICH texts as above] apply
to all types of analytical procedures in a pharmacopoeia. They are established by
demonstrating documentary evidence with respect to any particular pharmaceutical
substance or product.

The validation of analytical procedures described in monographs should comply with the
requirements as laid down, for example, in the WHO Supplementary guidelines on good
manufacturing practices: validation, Appendix 4 on Analytical method validation, in
“Validation of Analytical Procedures: Text and Methodology”.
