Revision of the Monograph on
LEVOFLOXACIN TABLETS

Draft proposal for The International Pharmacopoeia

(June 2019)

DRAFT FOR COMMENTS

Please send any comments you may have on this draft to Dr Herbert Schmidt
(schmidt@who.int), Medicines Quality Assurance Programme, Technologies Standards and
Norms, Department of Essential Medicines and Health Products, World Health Organization, 1211

In order to speed up the process for receiving draft monographs and for sending comments, please
send your email address to jonessi@who.int and we will add it to our electronic mailing list.
Please specify if you wish to receive monographs.

© World Health Organization 2019

This draft is intended for a restricted audience only, i.e. the individuals and organizations having received this draft. The draft
may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any
form or by any means outside these individuals and organizations (including the organizations' concerned staff and member
organizations) without the permission of the World Health Organization. The draft should not be displayed on any website.

Please send any request for permission to:

Dr Sabine Kopp, Group Lead, Medicines Quality Assurance, Technologies Standards and Norms, Department of Essential
Medicines and Health Products, World Health Organization, CH-1211 Geneva 27, Switzerland. Fax: (41-22) 791 4856; email:
kopps@who.int

The designations employed and the presentation of the material in this draft do not imply the expression of any opinion
whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of
its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border
lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or
recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and
omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this draft.
However, the printed material is being distributed without warranty of any kind, either expressed or implied. The responsibility
for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for
damages arising from its use.

This draft does not necessarily represent the decisions or the stated policy of the World Health Organization.
SCHEDULE FOR THE PROPOSED ADOPTION PROCESS OF DOCUMENT
QAS/17.718/Rev1:

REVISION OF THE MONOGRAPH ON LEVOFLOXACIN TABLETS
DRAFT PROPOSAL FOR THE INTERNATIONAL PHARMACOPOEIA

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monograph drafted.</td>
<td>April 2017</td>
</tr>
<tr>
<td>Discussion at the informal consultation on quality control</td>
<td>2–4 May 2017</td>
</tr>
<tr>
<td>laboratory tools and specifications for medicines.</td>
<td></td>
</tr>
<tr>
<td>Presentation to WHO Expert Committee on Specifications for Pharmaceutical Preparations.</td>
<td>October 2017</td>
</tr>
<tr>
<td>Laboratory investigations to verify the suitability of the methods</td>
<td>March 2017 to October</td>
</tr>
<tr>
<td>and specifications</td>
<td>2018</td>
</tr>
<tr>
<td>Presentation to WHO Expert Committee on Specifications for Pharmaceutical Preparations.</td>
<td>October 2018</td>
</tr>
<tr>
<td>Draft revision sent out for public consultation.</td>
<td>February to March 2019</td>
</tr>
<tr>
<td>Discussion at the informal consultation on screening technologies</td>
<td>2–3 May 2019</td>
</tr>
<tr>
<td>and pharmacopoeial specifications for medicines</td>
<td></td>
</tr>
<tr>
<td>Draft revision Rev.1 based on the comments received during the public consultation and the discussion at the informal consultation</td>
<td>May 2019</td>
</tr>
<tr>
<td>Draft Revision 1 sent out for public consultation.</td>
<td>June to August 2019</td>
</tr>
<tr>
<td>Presentation to WHO Expert Committee on Specifications for Pharmaceutical Preparations.</td>
<td>October 2019</td>
</tr>
<tr>
<td>Further follow-up action as required.</td>
<td></td>
</tr>
</tbody>
</table>

[Note from the Secretariat. It is proposed to revise the monograph on Levofloxacin tablets. The revision is based on and evaluation of information found in other pharmacopoeias, the scientific literature and on laboratory investigations performed by a collaborating laboratory.]
Levofloxacin tablets
(Levofloxacini compressi)

Category. Antibacterial, antibuberculosis.

Storage. Levofloxacin tablets should be kept in a well closed container, protected from light.

Labelling. The designation of the container of Levofloxacin tablets should state that the active ingredient is Levofloxacin hemihydrate and the quantity should be indicated in terms of the equivalent amount of levofloxacin.

Additional information. Strengths in the current WHO Model list of essential medicines (EML): 250 mg, 500 and 750 mg. Strengths in the current WHO EML for children: 250 mg and 500 mg.

Requirements

Comply with the monograph for Tablets.

Definition. Levofloxacin tablets contain Levofloxacin hemihydrate. They contain not less than 90.0% and not more than 110.0% of the amount of levofloxacin (C$_{18}$H$_{20}$F$_{3}$N$_{3}$O$_{4}$) stated on the label.

Identity test

Either test A or tests B and C may be applied.

A. To a quantity of the powdered tablets, nominally equivalent to 100 mg of levofloxacin, add 10 ml of acetonitrile R, shake, filter and evaporate to dryness. Carry out the examination as described under 1.7 Spectrophotometry in the infrared region. The infrared absorption spectrum is concordant with the spectrum obtained from levofloxacin RS or with the reference spectrum of levofloxacin hemihydrate.

If the spectra thus obtained are not concordant, repeat the test using the residues obtained by separately dissolving the test substance and levofloxacin RS in a small amount of
acetonitrile R and evaporating to dryness. The infrared absorption spectrum is concordant with the spectrum obtained from levofloxacin RS.

B. Carry out the test as described under 1.14.1. Thin-layer chromatography, using silica gel R6 as the coating substance and a mixture of 10 volumes of dichloromethane R, 5 volumes of methanol R and 1 volume of ammonia (~10 g/L) TS as the mobile phase. Apply separately to the plate 5 μl of each of the following two solutions in a mixture of 1 volume of methanol R and 4 volumes of dichloromethane R. For solution (A), shake a quantity of the powdered tablets, nominally equivalent to 25 mg of levofloxacin, with 5 mL, filter and use the clear filtrate. For solution (B), use a solution containing 5 mg of levofloxacin RS per mL. After removing the plate from the chromatographic chamber, allow it to dry exhaustively in air or in a current of cool air. Examine the chromatogram in ultraviolet light (366 nm).

The principal spot in the chromatogram obtained with solution (A) corresponds in position, appearance and intensity with the spot due to levofloxacin in the chromatogram obtained with solution (B).

C. Carry out the test as described under 1.14.4 High-performance liquid chromatography using the conditions given under “Assay”. The retention time of the principal peak in the chromatogram obtained with solution (1) corresponds to the retention time of the peak due to levofloxacin in the chromatogram obtained with solution (2).

Dissolution. Carry out the test as described under 5.5 Dissolution test for solid oral dosage forms, using as the dissolution medium 900 ml of hydrochloric acid (~3.65 g/L) TS and rotating the basket at 100 revolutions per minute. At 30 minutes, withdraw a sample of about 10 mL of the medium through an in-line filter. Allow the filtered sample to cool to room temperature and dilute 1.0 mL to 100.0 mL with hydrochloric acid (~3.65 g/L) TS.

Measure the absorbance (1.6) of a 1 cm layer of the sample at about 294 nm. At the same time and under the same conditions, measure the absorbance of a suitably diluted solution of levofloxacin RS in hydrochloric acid (~ 3.65 g/l) TS, using hydrochloric acid (~3.65 g/L) TS as a blank.

For each of the tablets, calculate the total amount of levofloxacin (C₁₈H₂₀FN₃O₄), in the medium. Evaluate the results as described under 5.5 Dissolution test for solid oral dosage
forms, Acceptance criteria. The amount of levofloxacin released is not less than 80% (Q) of the amount declared on the label.

[Note from the Secretariat. It is intended to determine the absorptivity value of levofloxacin during the establishment of levofloxacin RS. The value will then be included in the test description.]

Related substances. Prepare fresh solutions, protected from light, and perform the test without delay.

Carry out the test as described under 1.14.4 High-performance liquid chromatography using the conditions given under “Assay”.

Prepare the following solutions in mobile phase. For solution (1), transfer a quantity of the powdered tablets, nominally equivalent to 250.0 mg of levofloxacin, into a 250 mL volumetric flask, add about 180 ml, sonicate for 5 minutes, dilute to volume, mix and filter. For solution (2), dilute 1.0 mL of solution (1) to 100.0 mL. For solution (3), dilute 1.0 mL of solution (2) to 10.0 mL. For solution (4), use a solution containing 1.0 mg of levofloxacin for system suitability RS (containing levofloxacin and the impurities A, B and G) per mL.

Inject 25 μL of solution (1), (2), (3) and (4). Record the chromatogram for about three times the retention time of levofloxacin.

Use the chromatogram supplied with levofloxacin for system suitability RS and the chromatogram obtained with solution (3) to identify the peaks due to impurities A, B and G.

The impurities, if present, are eluted at the following relative retentions with reference to levofloxacin (retention time about 20 minutes): impurity E about 0.38, impurity B about 0.50, impurity G about 0.56, impurity C about 0.63, impurity A about 1.22.

The test is not valid unless, in the chromatogram obtained with solution (3), the resolution factor between the peaks due to impurity B and impurity G is at least 1.5.

In the chromatogram obtained with solution (1):

- the area of any peak corresponding to impurity B, when multiplied by a correction factor of 1.3, is not greater than seven times the area of the peak due to levofloxacin in the chromatogram obtained solution with (3) (0.7%);
the area of any peak corresponding to impurity C, when multiplied by a correction factor of 1.47, is not greater than seven times the area of the peak due to levofloxacin in the chromatogram obtained with solution (3) (0.7%);

- the area of any peak corresponding to impurity E, when multiplied by a correction factor of 1.67, is not greater than three times the area of the peak due to levofloxacin in the chromatogram obtained with solution (3) (0.3%);

- the area of any peak corresponding to impurity G, when multiplied by a correction factor of 1.20, is not greater than three times the area of the peak due to levofloxacin in the chromatogram obtained with solution (3) (0.3%);

- the area of any other impurity peak is not greater than twice the area of the peak due to levofloxacin in the chromatogram obtained with solution (3) (0.2%);

- the sum of the corrected areas of any peak corresponding to impurity B, C, E and G and the areas of all other impurity peaks, other than any peak due to impurity A, is not greater than the area of the peak due to levofloxacin in the chromatogram obtained with solution (2) (1%). Disregard any peak with an area less the area of the peak due to levofloxacin in the chromatogram obtained with solution (3) (0.1%).

Assay. Prepare fresh solutions, protected from light and perform the test without delay.

Carry out the test as described under 1.14.4 High-performance liquid chromatography using a stainless steel column (25 cm x 4.6 mm), packed with end-capped and base-deactivated particles of silica gel, the surface of which has been modified with chemically-bonded octadecylsilyl groups (5 μm).\(^1\)

Prepare the following buffer solution. Dissolve 1.25 g of copper sulfate pentahydrate R, 1.3 g of isoleucine R and 8.5 g of ammonium acetate R in water R and dilute to 1000 mL with the same solvent.

As the mobile phase, use a mixture of methanol R and buffer solution (30:70 v/v). Operate with a flow rate of 0.8 mL per minute. As a detector, use an ultraviolet spectrophotometer set at a wavelength of 360 nm. Maintain the column temperature at 45 °C.

Weigh and powder 20 tablets. For solution (1), transfer a quantity of the powdered tablets, nominally equivalent to 50.0 mg of levofloxacin, into a 250 mL volumetric flask, add about

\(^1\) Inertsil ODS-2 or ODS-3 columns were found suitable.
180 mL of the mobile phase, shake for 30 minutes, dilute to volume, mix and filter. For solution (2), dissolve 20.0 mg of levofloxacin RS in mobile phase and dilute to 100.0 mL using the same solvent.

Inject alternately 10 μL each of solution (1) and (2) and record the chromatograms for about two times the retention time of levofloxacin.

Measure the areas of the peaks corresponding to levofloxacin obtained in the chromatograms of solutions (1) and (2) and calculate the percentage content of levofloxacin ($\text{C}_{18}\text{H}_{20}\text{F}_{3}\text{O}_{4}$) in the tablets, using the declared content of $\text{C}_{18}\text{H}_{20}\text{F}_{3}\text{O}_{4}$ in levofloxacin RS.

Impurities. The impurities limited by the requirements of this monograph include those listed in the monograph for Levofloxacin hemihydrate.