Revision of the Monograph on
PYRIMETHAMINE TABLETS
(PYRIMETHAMINI COMPRESSI)
Draft revision for The International Pharmacopoeia
(June 2019)

DRAFT FOR COMMENTS

Please send any queries you may have to Dr Herbert Schmidt, Medicines Quality Assurance Programme, Technologies, Standards and Norms, Department of Essential Medicines and Health Products, World Health Organization, 1211 Geneva 27, Switzerland; fax: +41 22 791 4856 or email: schmidt@who.int by 31 August 2019.

In order to speed up the process for receiving draft monographs and for sending comments, please send your email address (to jnnessi@who.int) and we will add it to our electronic mailing list. Please specify if you wish to receive monographs.

© World Health Organization 2019

All rights reserved.

This draft is intended for a restricted audience only, i.e. the individuals and organizations having received this draft. The draft may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means outside these individuals and organizations (including the organizations’ concerned staff and member organizations) without the permission of the World Health Organization. The draft should not be displayed on any website.

Please send any request for permission to Dr Sabine Kopp, Manager, Medicines Quality Assurance Programme, Technologies Standards and Norms, Department of Essential Medicines and Health Products, World Health Organization, CH-1211 Geneva 27, Switzerland, fax: 41-22 791 4856; email: kopps@who.int.

The designations employed and the presentation of the material in this draft do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this draft. However, the printed material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

This draft does not necessarily represent the decisions or the stated policy of the World Health Organization.
<table>
<thead>
<tr>
<th>Action taken</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>First draft received from collaborating laboratory.</td>
<td>January 2017</td>
</tr>
<tr>
<td>Discussion at the Consultation on Screening Technology, Sampling and Specifications for Medicines.</td>
<td>May 2017</td>
</tr>
<tr>
<td>Revision of the first draft (Rev1).</td>
<td>September 2017</td>
</tr>
<tr>
<td>Discussion at the 52nd meeting of the Expert Committee on Specifications for Pharmaceutical Preparations (ECSPP).</td>
<td>October 2017</td>
</tr>
<tr>
<td>Draft revision (Rev2) sent out for public consultation.</td>
<td>November 2017 – January 2018</td>
</tr>
<tr>
<td>Discussion at the Consultation on Screening Technology, Sampling and Specification for Medicines.</td>
<td>2-4 May 2018</td>
</tr>
<tr>
<td>Additional laboratory investigations and revision of the second draft in order to address comments received.</td>
<td>May 2018 – ongoing</td>
</tr>
<tr>
<td>Submission to the 53rd ECSPP.</td>
<td>October 2018</td>
</tr>
<tr>
<td>Discussion at the informal Consultation on Screening Technologies and Pharmacopoeial Specifications for Medicines.</td>
<td>2-3 May 2019</td>
</tr>
<tr>
<td>Draft revision (Rev3) sent out for public consultation.</td>
<td>July – August 2019</td>
</tr>
<tr>
<td>Submission to the 54th ECSPP.</td>
<td>October 2019</td>
</tr>
<tr>
<td>Further follow-up action as required</td>
<td></td>
</tr>
</tbody>
</table>

[Note from the Secretariat: It is proposed to include the monograph on Pyrimethamine tablets in The International Pharmacopoeia.]
PYRIMETHAMINE TABLETS
(PYRIMETHAMINI COMPRESSI)

Category. Antimalarial.

Storage. Pyrimethamine tablets should be kept in a well-closed container, protected from light.

Requirements

Comply with the monograph for Tablets.

Definition. Pyrimethamine tablets contain not less than 90.0% and not more than 110.0% of the labelled amount of Pyrimethamine (C₁₂H₁₃ClN₄).

Identity tests.

• Either test A or tests B and C may be applied.

A. Shake a quantity of the powdered tablets, containing about 50 mg of Pyrimethamine, with 50 mL of dehydrated ethanol R for 20 minutes, filter and evaporate the filtrate to dryness. Carry out the examination as described under 1.7 Spectrophotometry in the infrared region. The infrared absorption spectrum is concordant with the spectrum obtained from pyrimethamine RS treated similarly.

B. To a quantity of the powdered tablets, containing about 25 mg of Pyrimethamine, add 50 mL of hot hydrochloric acid (~3.65 g/L) TS and heat on a water bath for 10 minutes, swirling occasionally. Sonicate for 30 minutes and cool to room
temperature. Add sufficient hydrochloric acid (~3.65 g/L) TS to produce 100 mL. Filter a portion of this solution and discard the first few mL of the filtrate. Dilute 5 mL of the filtrate to 100 mL with hydrochloric acid (~3.65 g/L) TS. The absorption spectrum of the solution, when observed between 250 and 300 nm, exhibits a maximum at about 272 nm and a minimum at about 261 nm.

C. Carry out the test as described under 1.14.4 High-performance liquid chromatography using the conditions given under “Assay”. The retention time of the principal peak in the chromatogram obtained with solution (1) corresponds to the peak due to pyrimethamine in the chromatogram obtained with solution (2).

Dissolution. Carry out the test described under 5.5 Dissolution test for solid oral dosage forms, using as the dissolution medium 900 mL of hydrochloric acid (~3.65 g/L) TS and rotating the paddle at 50 revolutions per minute. At 45 minutes, withdraw a sample of 10 mL of the medium through an in-line filter. Measure the absorbance (1.6) of a 1-cm layer of the filtered sample at the maximum at about 272 nm, using the dissolution buffer as the blank. Measure at the same time and under the same conditions the absorbance of a solution of pyrimethamine RS with a suitable concentration in dissolution medium.

For each of the tablets tested, calculate the total amount of pyrimethamine (C\textsubscript{12}H\textsubscript{13}ClN\textsubscript{4}) in the medium from the results obtained. Evaluate the results as described under 5.5 Dissolution test for solid oral dosage forms, Acceptance criteria. The amount of pyrimethamine released is not less than 75% (Q) of the amount declared on the label.

[Note from the Secretariat: It is intended to determine the absorptivity value of pyrimethamine during the establishment of pyrimethamine RS and to use this value for the calculation of the test result.]

Related substances. Carry out the test as described under 1.14.4 High-performance liquid chromatography using the conditions given under “Assay”.

Use solution (1) as described under “Assay”. Prepare the following additional solutions.

For solution (2), dilute 10.0 mL of solution (1) to 100.0 mL with mobile phase. Dilute 1.0 mL of this solution to 100.0 mL with mobile phase. For solution (3), prepare 20 mL of a 1.25 mg/mL solution of pyrimethamine in sulfuric acid (~570 g/L) TS in a 25 mL conical flask. Heat the solution on a hotplate until it boils. Continue to heat to reduce the volume to about half its original volume. The final solution should be clear with a light tinge of yellow. Cool and dilute 1 volume of this solution to 10 volumes with mobile phase.

Inject 30 μL of solution (3). Record the chromatogram for about 2.5 times the retention time of pyrimethamine (retention time about 12 minutes). The impurities are eluted at the following relative retention with reference to pyrimethamine: impurity A about 0.35; impurity B about 0.45; impurity C about 0.64; impurity D about 0.15; impurity E about 0.42; impurity F about 0.52 and impurity G about 2.28. The test is not valid unless in the chromatogram obtained with solution (3) the resolutions between impurities A and B is at least 3.0.

Inject alternately 30 μL of solutions (1) and (2).

Use the chromatogram obtained with solution (3) to identify the peaks due to the impurities A, B and C.

In the chromatogram obtained with solution (1):

- the area of any peak corresponding to either impurity A, B or C is not greater than two times the area of the peak due to pyrimethamine in the chromatogram obtained with solution (2) (0.2%).
- The sum of the areas of all impurity peaks is not greater than five times the area of the peak due to pyrimethamine in the chromatogram obtained with solution (2) (0.5%). Disregard any peak with an area less than the area of the peak due to pyrimethamine in the chromatogram in the chromatogram obtained with solution (2) (0.1%).
Assay. Carry out the test as described under 1.14.4 High-performance liquid chromatography using a stainless steel column (10 cm x 4.6 mm) packed with end-capped particles of silica gel, the surface of which has been modified with chemically-bonded octadecylsilyl groups (3.5 µm).\(^1\)

Prepare an ammonia solution by adding 10.0 mL of ammonia (~260 g/L) TS to 150 ml of water R, mix and dilute to 200.0 ml with water. Prepare the ammonium bicarbonate buffer pH 9.3 by dissolving 0.8 g of ammonium bicarbonate R in 1500 mL of water, adjust the pH to 9.3 by adding the ammonium solution (about 25 mL), mix and dilute to 2000.0 ml with water R.

As the mobile phase, use a mixture of 55 volumes of ammonium bicarbonate buffer pH 9.3 and 45 volumes of methanol R.

Operate with a flow rate of 1.5 mL per minute. As a detector, use an ultraviolet spectrophotometer set at a wavelength of 280 nm. Maintain the column temperature at 35°C.

Prepare as a solvent solution a mixture of 50 volumes of acetic acid (~ 10 g/L) TS and 50 volumes of methanol R.

Prepare the following solutions. For solution (1), weigh and powder 20 tablets. Transfer a quantity of the powdered tablets, containing about 125.0 mg of pyrimethamine into a 100 mL volumetric flask. Add approximately 75 mL of the solvent solution and sonicate for about 10 minutes. Dilute to volume with the solvent solution, mix and filter. Dilute 5.0 mL of the filtrate to 50.0 mL with mobile phase. For solution (2), dissolve 12.5 mg pyrimethamine RS in 20 mL, sonicate for 10 minutes and dilute to 100.0 mL with mobile phase.

Inject 30 µL of solutions (1) and (2).

\(^1\)Agilent Zorbax Eclipse XDB-C18 has been found suitable.
Measure the areas of the peaks corresponding to pyrimethamine obtained in the chromatograms from solutions (1) and (2) and calculate the percentage content of C_{12}H_{13}ClN_{4} in the tablets, using the declared content of C_{12}H_{13}ClN_{4} in pyrimethamine RS.

Impurities. The impurities limited by the requirements of this monograph include those listed in the monograph on Pyrimethamine.

Reagents to be added to The International Pharmacopoeia:

- Ammonium bicarbonate R; and
- Analytical reagent grade of commerce containing not less than 99% of NH_{4}HCO_{3}.