Revision of the Monograph on
LEVOFLOXACIN HEMIHYDRATE

Draft proposal for The International Pharmacopoeia

(June 2019)

DRAFT FOR COMMENTS

Please send any comments you may have on this draft to Dr Herbert Schmidt (schmidt@who.int), Medicines Quality Assurance Programme, Technologies Standards and Norms, Department of Essential Medicines and Health Products, World Health Organization, 1211 Geneva 27, Switzerland, by 15 August 2019.

In order to speed up the process for receiving draft monographs and for sending comments, please send your email address to jonessi@who.int and we will add it to our electronic mailing list. Please specify if you wish to receive monographs.

© World Health Organization 2019

All rights reserved.

This draft is intended for a restricted audience only, i.e. the individuals and organizations having received this draft. The draft may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means outside these individuals and organizations (including the organizations' concerned staff and member organizations) without the permission of the World Health Organization. The draft should not be displayed on any website.

Please send any request for permission to:
Dr Sabine Kopp, Group Lead, Medicines Quality Assurance, Technologies Standards and Norms, Department of Essential Medicines and Health Products, World Health Organization, CH-1211 Geneva 27, Switzerland. Fax: (41-22) 791 4856; email: kopp@who.int

The designations employed and the presentation of the material in this draft do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this draft. However, the printed material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

This draft does not necessarily represent the decisions or the stated policy of the World Health Organization.
SCHEDULE FOR THE PROPOSED ADOPTION PROCESS OF DOCUMENT QAS/17.717:

REVISION OF THE MONOGRAPH ON LEVOFLOXACIN

DRAFT PROPOSAL FOR THE INTERNATIONAL PHARMACOPOEIA

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monograph drafted.</td>
<td>March 2017</td>
</tr>
<tr>
<td>Discussion at the informal consultation on quality control laboratory tools and specifications for medicines.</td>
<td>2–4 May 2017</td>
</tr>
<tr>
<td>Presentation to WHO Expert Committee on Specifications for Pharmaceutical Preparations.</td>
<td>October 2017</td>
</tr>
<tr>
<td>Laboratory investigations to verify the suitability of the methods and specifications.</td>
<td>March 2017 to October 2018</td>
</tr>
<tr>
<td>Presentation to WHO Expert Committee on Specifications for Pharmaceutical Preparations.</td>
<td>October 2018</td>
</tr>
<tr>
<td>Draft revision sent out for public consultation.</td>
<td>February to March 2019</td>
</tr>
<tr>
<td>Discussion at the informal consultation on screening technologies and pharmacopoeial specifications for medicines</td>
<td>2–3 May 2019</td>
</tr>
<tr>
<td>Draft revision Rev.1 based on the comments received during the public consultation and the discussion at the informal consultation</td>
<td>May 2019</td>
</tr>
<tr>
<td>Draft Revision 1 sent out for public consultation.</td>
<td>June to August 2019</td>
</tr>
<tr>
<td>Presentation to WHO Expert Committee on Specifications for Pharmaceutical Preparations.</td>
<td>October 2019</td>
</tr>
<tr>
<td>Further follow-up action as required.</td>
<td></td>
</tr>
</tbody>
</table>

[Note from the Secretariat. It is proposed to revise the monograph on Levofloxacin. The revision is based on an evaluation of information found in other pharmacopoeias, in the scientific literature and on laboratory investigations performed by a collaborating laboratory. Comments are sought in particular on the question whether the impurities listed under the impurity section are synthesis related impurities or degradation products.]
Levofloxacin hemihydrate

(Levofloxacinum hemihydricum)

Molecular formula. $\text{C}_{18}\text{H}_{20}\text{FN}_{3}\text{O}_{4}, \frac{1}{2} \text{H}_2\text{O}$

Relative molecular mass. 370.4

Graphic formula.

![Graphic formula](image)

Chemical name. (3S)-9-Fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid hemihydrate; CAS Reg. No. 138199-71-0.

Description. Light yellowish-white or slightly yellow powder.

Solubility. Sparingly soluble in water R, freely soluble in acetic acid (~300 g/L) TS, sparingly soluble in methanol R, and slightly soluble in dehydrated ethanol R.

Category. Antibacterial, antituberculosis.

Storage. Levofloxacin hemihydrate should be kept in a tightly closed container, protected from light.

Labelling. The designation on the container should state the substance is in the form of the hemihydrate.

Additional information. Levofloxacin may exhibit polymorphism.
Requirements

Definition. Levofloxacin hemihydrate contains not less than 98.0% and not more than 101.0% of levofloxacin (C₁₈H₂₀FN₃O₄) calculated with reference to the anhydrous substance.

Identity test

Either tests A and D or tests B, C and D may be applied.

A. Carry out the examination as described under 1.7 Spectrophotometry in the infrared region. The infrared absorption spectrum is concordant with the spectrum obtained from levofloxacin RS or with the reference spectrum of levofloxacin hemihydrate. If the spectra thus obtained are not concordant, repeat the test using the residues obtained by separately dissolving the test substance and levofloxacin RS in a small amount of acetonitrile R and evaporating to dryness. The infrared absorption spectrum is concordant with the spectrum obtained from levofloxacin RS.

B. Carry out the test as described under 1.14.1. Thin layer chromatography, using silica gel R6 as the coating substance and a mixture of 4 volumes of 1-butanol R, 4 volumes of methanol R and 2 volumes of ammonia (~100 g/L) TS as the mobile phase. Apply separately to the plate 5 μl of each of the following two solutions in a mixture of 1 volume of methanol R and 4 volumes of dichloromethane R. For solution (A), use a solution containing 5 mg of the test substance per mL. For solution (B), use a solution containing 5 mg of levofloxacin RS per mL. After removing the plate from the chromatographic chamber, allow it to dry exhaustively in air or in a current of cool air. Examine the chromatogram in ultraviolet light (366 nm).

The principal spot obtained with solution (A) corresponds in position, appearance, and intensity with the spot due to levofloxacin in the chromatogram obtained with solution (B).

C. Dissolve 25 mg of the test substance in 20 ml of hydrochloric acid (~4 g/l) TS and dilute to 50.0 ml with the same solvent. Dilute 1.0 ml of this solution to 100.0 ml using water R. The absorption spectrum (1.6) of the resulting solution, when observed between 210 and 350 nm, exhibits two maxima at about 227 nm and at about 294 nm.
D. Carry out test D.1 or D.2.

D.1 Determine the specific optical rotation (α) using a solution containing 5.0 mg of the test substance per mL methanol R and calculate with reference to the anhydrous substance; $[\alpha]_D^{20} = -92$ to -106.

D.2 Carry out the test as described under 1.14.4 High-performance liquid chromatography using the conditions given under “Related substances”. The retention time of the principal peak obtained with solution (1) corresponds to the retention time of the peak due to levofloxacin in the chromatogram obtained with solution (3).

Heavy metals. Use 2.0 g for the preparation of the test solution as described under 2.2.3 Limit test for heavy metals, Procedure 3; determine the heavy metals content according to Method A; not more than 10 μg/g.

Sulfated ash (2.3). Not more than 1.0 mg/g.

Water. Determine as described under 2.8 Determination of water by Karl Fischer Method, Method A. Use 0.500 g of the test substance and a mixture of equal volumes of formamide R and methanol R as solvent. The water content is not less than 20 mg/g and not more than 30 mg/g.

Related substances. Prepare fresh solutions protected from light and perform the test without delay.

Carry out the test as described under 1.14.4 High-performance liquid chromatography using a stainless steel column (25 cm x 4.6 mm), packed with end-capped and base-deactivated particles of silica gel, the surface of which has been modified with chemically-bonded octadecylsilyl groups (5 μm).¹

Prepare the following buffer solution. Dissolve 1.25 g of copper (II) sulfate pentahydrate R, 1.3 g of isoleucine R and 8.5 g ammonium acetate R in water R and dilute to 1000 mL with the same solvent.

¹ Inertsil ODS-2 or ODS-3 columns were found suitable.
As the mobile phase, use a mixture of methanol R and the buffer solution (30:70 v/v). Operate with a flow rate of 0.8 mL per minute. As a detector, use an ultraviolet spectrophotometer set at a wavelength of 360 nm. Maintain the column at a temperature of 45 °C.

Prepare the following solutions in mobile phase. For solution (1), dissolve 50.0 mg of the test substance in 50.0 mL. For solution (2), dilute 1.0 mL of solution (1) to 100.0 mL. For solution (3), dilute 1.0 mL of solution (2) to 10.0 mL. For solution (4), use a solution containing 1.0 mg of levofloxacin for system suitability RS (containing levofloxacin and the impurities A, B and G) per mL.

Inject alternately 25 µL of solution (1), (2), (3) and (4). Record the chromatogram for three times the retention time of levofloxacin.

Use the chromatogram obtained with solution (4) and the chromatogram supplied with levofloxacin for system suitability RS to identify the peaks due to the impurities A, B and G. The impurities are eluted at the following relative retention with reference to levofloxacin (retention time about 20 minutes); impurity B about 0.50; impurity G about 0.56; impurity A about 1.22.

The test is not valid unless, in the chromatogram obtained with solution (4), the resolution between the peaks due to impurity B and the peak due to impurity G is at least 1.5.

In the chromatogram obtained with solution (1):

- the area of any peak corresponding to impurity B, when multiplied by a correction factor of 1.3, is not greater than three times the area of the peak due to levofloxacin in the chromatogram obtained with solution (3) (0.3 %);
- the area of any peak corresponding to impurity G, when multiplied by a correction factor of 1.1, is not greater than three times the area of the peak due to levofloxacin in the chromatogram obtained with solution (3) (0.3 %);
- the area of any peak corresponding to impurity A is not greater than the area of the peak due to levofloxacin in the chromatogram obtained with solution (2) (1.0 %);
- the area of any other impurity peak is not greater than the area of the peak due to levofloxacin in the chromatogram obtained with solution (3) (0.10 %);
- the sum of the corrected areas of any peak corresponding to impurity B or G and the areas of all other impurity peaks, other than any peak due to impurity A, is not greater
than 0.5 times the area of the peak due to levofloxacin in the chromatogram obtained with solution (2) (0.5 %). Disregard any peak with an area less than 0.5 times the area of the peak due to levofloxacin in the chromatogram in the chromatogram obtained with solution (3) (0.05%).

Impurity F. Carry out the test as described under 1.14.4 *High-performance liquid chromatography* using the conditions given under “Related substances” with the following modifications. As the mobile phase, use a mixture of methanol R and the buffer solution (50:50 v/v). As a detector, use an ultraviolet spectrophotometer set at a wavelength of 320 nm.

Prepare the following solutions in mobile phase. For solution (1), dissolve 50.0 mg of the test substance in 50.0 mL. For solution (2), dissolve 5.0 mg of levofloxacin impurity F RS and dilute to 100.0 mL. For solution (3), dilute 1.0 mL of solution (2) to 25.0 mL. For solution (4), dilute 4.0 mL of solution (2) to 10.0 mL. Dilute 1.0 ml of this solution to 10.0 mL with solution (1).

Inject alternately 25 µL of solution (1), (3) and (4). Record the chromatogram for three times the retention time of levofloxacin.

Use the chromatogram obtained with solution (3) to identify the peaks due to impurity F. Impurity F is eluted at the relative retention of 1.8 with reference to levofloxacin (retention time: about 6 minutes).

The test is not valid unless, in the chromatogram obtained with solution (4), the resolution between the peak due to impurity F and the peak due to levofloxacin is at least 5.

Measure the areas of the peaks corresponding to impurity F obtained in the chromatograms of solution (1) and (3) and calculate the percentage content of impurity F. The concentration of impurity F is not more than 0.2%.

Assay. Prepare fresh solutions protected from light and perform the test without delay.

Dissolve 0.300 g in 100 ml of glacial acetic acid R and titrate with perchloric acid (0.1 mol/l) VS as described under 2.6. *Non-aqueous titrations*, Method A determining the end point potentiometrically. Each ml of perchloric acid (0.1 mol/l) VS is equivalent to 36.14 mg of \(\text{C}_{18}\text{H}_{20}\text{FN}_{3}\text{O}_{4} \).
Impurities

A. (3R)-9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-pyrido[1,2,3-de]-1, 4-benzoxazine-6-carboxylic acid (dextroflaxacin, synthesis-related impurity),

B. (3S)-9-fluoro-3-methyl-7-oxo-10-(piperazin-1-yl)-2,3-dihydro-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid (N-desmethyl levofloxacin),

C. 4-[3S)-6-carboxy-9-fluoro-3-methyl-7-oxo-2,3-dihydro-7H-pyrido[1,2,3-de]-1,4-benzoxazin-10-yl]-1-methylpiperazine 1-oxide (levofloxacin N-oxide; degradation product),

D. (3S)-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid (9-desfluoro levofloxacin, synthesis related impurity),
E. (3S)-9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-2,3-dihydro-7H-pyrido[1,2,3-de]-1,4-benzoxazin-7-one (decarboxy levofloxacin, synthesis related impurity),

F. (3S)-9,10-difluoro-3-methyl-7-oxo-2,3-dihydro-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid,

G. (3S)-9-fluoro-3-methyl-10-[[2-(methylamino)ethyl]amino]-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid (diamine derivative)

H. ethyl (3R)-9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylate

I. (3S)-10-fluoro-3-methyl-9-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid (levofloxacin 9-piperazino isomer, synthesis related impurity)
New reference substances to be established

Levofloxacin RS

ICRS to be established.

Levofloxacin impurity F RS

ICRS to be established.

Levofloxacin for system suitability RS (containing levofloxacin and the impurities A, B and G)

It is intended to refer to the corresponding reference substance established by the European Pharmacopoeia.

New reagent to be added

Ammonia (~10 g/L) TS

Ammonia (~100 g/L) TS, diluted to contain about 10 g of NH₃ per litre (approximately 1% (w/v)).

Copper (II) sulfate pentahydrate R

CuSO₄·5H₂O, [7758-99-8]; blue, crystalline powder or transparent, blue crystals, content: 99.0% to 101.0%.

L-Isoleucine R

(2S,3S)-2-Amino-3-methylpentanoic acid, C₆H₁₃NO₂, content: 98.5% to 101.0% (dried substance).