TENOFOVIR DISOPROXIL FUMARATE

(TENOFOVIRI DISOPROXILI FUMARAS)

Draft proposal for revision for The International Pharmacopoeia

(September 2019)

DRAFT FOR COMMENTS

Please send any comments you may have on this draft working document to Dr Herbert Schmidt, Technical Officer, Medicines Quality Assurance, Technologies Standards and Norms (email: schmidt@who.int) by 31 October 2019.

Working documents are sent out electronically and they will also be placed on the WHO Medicines website (http://www.who.int/medicines/areas/quality_safety/quality_assurance/guidelines/en/) for comments under the “Current projects” link. If you wish to receive our draft guidelines, please send your e-mail address to jonessi@who.int and your name will be added to our electronic mailing list.

© World Health Organization 2019

All rights reserved.

This draft is intended for a restricted audience only, i.e. the individuals and organizations having received this draft. The draft may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means outside these individuals and organizations (including the organizations' concerned staff and member organizations) without the permission of the World Health Organization. The draft should not be displayed on any website.

Please send any request for permission to:

Dr Sabine Kopp, Group Lead, Medicines Quality Assurance, Technologies Standards and Norms, Department of Essential Medicines and Health Products, World Health Organization, CH-1211 Geneva 27, Switzerland, e-mail: kopps@who.int.

The designations employed and the presentation of the material in this draft do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this draft. However, the printed material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

This draft does not necessarily represent the decisions or the stated policy of the World Health Organization.
SCHEDULE FOR THE ADOPTION PROCESS OF DOCUMENT QAS/19.814:

TENOFOVIR DISOPROXIL FUMARATE
(TENOFOVIRI DISOPROXILI FUMARAS)

<table>
<thead>
<tr>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>First draft prepared.</td>
<td>July 2019</td>
</tr>
<tr>
<td>First draft sent out for public consultation</td>
<td>August – October 2019</td>
</tr>
<tr>
<td>Presentation to the WHO Expert Committee on Specifications for Pharmaceutical Preparations.</td>
<td>October 2019</td>
</tr>
<tr>
<td>Further follow-up action as required.</td>
<td></td>
</tr>
</tbody>
</table>

[Note from the Secretariat. It is proposed to revise the monograph on Tenofovir disoproxil fumarate, in particular, by adding a test for tenofovir disoproxil enantiomer (impurity G). Some further mainly editorial changes are also proposed.

The proposal is based on laboratory investigations and on information found in the scientific literature.

Changes from the current monograph are indicated in the text by insert or delete.]
TENOFOVIR DISOPROXIL FUMARATE
(TENOFOVIRI DISOPROXILI FUMARAS)

Graphic formula.

Molecular formula. \(C_{19}H_{30}N_{5}O_{10}P \cdot C_{4}H_{4}O_{4} \)

Relative molecular mass. 635.5.

Chemical names. bis(1-methylethyl) 5-\{[(1R)-2-(6-amino-9H-purin-9-yl)-1-
methylethoxy]methyl\}-5-oxo-2,4,6,8-tetraoxa-5-\(\lambda^5 \)-phosphanonanedioate (ester) hydrogen
(2E)-but-2-enedioate (salt); bis\{[(1-methylethoxy)carbonyloxy]methyl\} \{[(1R)-2-(6-amino-
9H-purin-9-yl)-1-methylethoxy]methyl\}phosphonate (ester) hydrogen (2E)-but-2-enedioate
(salt); 5-\{[(1R)-2-(6-amino-9H-purin-9-yl)-1-methylethoxy]methyl\}-2,4,6,8-tetraoxa-5-
phosphanonanedioic acid 1,9-bis(1-methylethyl) ester 5-oxide, (2E)-2-butenedioate (1:1);

CAS Reg. No. 202138 50 9

Description. White to almost-white, crystalline powder.

Solubility. Slightly soluble in water \(R \), soluble in methanol \(R \), very slightly soluble in
dichloromethane \(R \).

Category. Antiretroviral (Nucleotide Reverse Transcriptase Inhibitor).

Storage. Tenofovir disoproxil fumarate should be kept in a tightly closed container, protected
from light and stored at a temperature between 2–8 °C.

Additional information. Tenofovir disoproxil fumarate may exhibit polymorphism.
Requirements

Definition. Tenofovir disoproxil fumarate contains not less than 98.5% and not more than 101.0% of tenofovir disoproxil fumarate \((C_{19}H_{30}N_5O_{10}P.C_4H_4O_4)\), calculated with reference to the anhydrous substance.

Manufacture. The production method is validated to ensure that the substance, if tested, would comply with a limit of not more than 5 ppm for the mutagenic impurity 9-propenyladenine (impurity K), which may be a synthesis-related substance, using a suitable method:

- a limit of not more than 1.0% for the tenofovir disoproxil (S) enantiomer (impurity G) using a suitable chiral chromatographic method.

Identity tests

Either tests A, B and C or test D may be applied.

A. Carry out test A.1 or, where UV detection is not available, test A.2.

A.1 Carry out the test as described under 1.14.1 Thin-layer chromatography using silica gel R6 as the coating substance and a mixture of 67 volumes of dichloromethane R, 20 volumes of acetonitrile R, 10 volumes of methanol R and 3 volumes of ammonia (~260 g/L) TS as the mobile phase. Apply separately to the plate 5 μL of each of two solutions in methanol containing (A) 10 mg of the test substance per mL and (B) 10 mg of tenofovir disoproxil fumarate RS per mL. After removing the plate from the chromatographic chamber, allow it to dry exhaustively in air or in a current of air. Examine the chromatogram in ultraviolet light (254 nm).

The principal spot obtained with solution (A) corresponds in position, appearance and intensity with that obtained with solution (B).

A.2 Carry out the test as described under 1.14.1 Thin-layer chromatography using the conditions described above under test A.1 but using silica gel R5 as the
coating substance. Stain the plate with iodine vapour and examine the chromatogram in daylight.

The principal spot obtained with solution (A) corresponds in position, appearance and intensity with that obtained with solution (B).

B. Carry out test B.1 or, where UV detection is not available, test B.2.

B.1 Carry out the test as described under 1.14.1 Thin-layer chromatography using silica gel R6 as the coating substance and a mixture of 50 volumes of heptane R, 30 volumes of glacial acetic acid R and 20 volumes of dichloromethane R as the mobile phase. Apply separately to the plate 5 μL of each of the following two solutions in ethanol R. For solution (A), use 10 mg of the test substance per mL and for solution (B), use 2 mg of fumaric acid R per mL. Develop the plate in an unsaturated tank over a path of 10 cm. After removing the plate from the chromatographic chamber, allow it to dry exhaustively in air or in a current of air. Examine the chromatogram in ultraviolet light (254 nm).

One of the principal spots obtained with solution (A) corresponds in position, appearance and intensity with that obtained with solution (B).

B.2 Carry out the test as described under 1.14.1 Thin-layer chromatography using the conditions described above under test B.1 but using silica gel R5 as the coating substance. Spray lightly with a 16 g/L solution of potassium permanganate R and examine the chromatogram in daylight.

The principal spot obtained with solution (A) corresponds in position, appearance and intensity with that obtained with solution (B).

C. The absorption spectrum (1.6) of a 25 µg/mL solution, when observed between 220 nm and 320 nm, exhibits a maximum at about 261 nm; the specific absorbance \(A_{1%}^{1cm} \) is 230 to 250.

D. Carry out the examination as described under 1.7 Spectrophotometry in the infrared region. The infrared absorption spectrum is concordant with the spectrum obtained from
tenofovir disoproxil fumarate RS or with the reference spectrum of tenofovir disoproxil fumarate.

If the spectra thus obtained are not concordant, repeat the test using the residues obtained by separately dissolving the test substance and tenofovir disoproxil fumarate RS in a small amount of methanol R and evaporating to dryness. The infrared absorption spectrum is concordant with the spectrum obtained from tenofovir disoproxil fumarate RS.

Specific optical rotation (1.4). Prepare a fresh solution and perform the test without delay. Use a 10.0 mg/mL solution in hydrochloric acid (0.1 mol/l) VS and calculate with reference to the anhydrous substance; \([\alpha]_D^{20} = -15 \text{ to } -20.\]

Water. Determine as described under 2.8 Determination of water by the Karl Fischer method, Method A. Use about 1.0 g of the substance; the water content is not more than 10 mg/g.

Heavy metals. Use 1.0 g in 30 mL of methanol R for the preparation of the test solution as described under 2.2.3 Limit test for heavy metals, Procedure 2; determine the heavy metals content according to Method A; not more than 20 µg/g.

Sulfated ash (2.3). Not more than 2.0 mg/g.

Impurity G. Carry out test as described under 1.14.4 High-performance liquid chromatography using a stainless steel column (25 cm x 4.6 mm) packed with particles of silica gel, the surface of which has been modified with amylose tris (3,5-dimethylphenyl carbamate) (5 µm). As the mobile phase, use a mixture of 949 volumes of methanol R, 50 volumes of acetonitrile R and 1 volume of triethylamine R.

Operate at a flow rate of 0.8 mL per minute. As a detector, use an ultraviolet spectrophotometer set at a wavelength of 260 nm. Maintain the column temperature at 20 °C.

Prepare the following solutions using mobile phase as the diluent. For solution (1), dissolve 40.0 mg of the test substance in 100.0 mL. For solution (2), dilute 1.0 mL of solution (1) to

1 A Nucleocel Alpha-RP S or a Chiralpak AD-H column were found suitable.
For solution (3), use a solution containing 0.4 mg of tenofovir disoproxil fumarate for epimer identification RS (containing tenofovir disoproxil and the impurities G) per mL.

Inject 5 µL of solution (3). Record the chromatogram for about 15 minutes.

Impurity G is eluted at the relative retention of 1.6 with reference to tenofovir disoproxil (retention time about 5 minutes).

The test is not valid unless the resolution factor between the peaks due to impurity G and due to tenofovir disoproxil is at least 3.

Inject alternately 5 µL each of solutions (1) and (2).

In the chromatogram obtained with solution (1):

- the area of any peak corresponding to impurity G is not greater than the area of the peak due to tenofovir disoproxil in the chromatogram obtained with solution (2) (1.0%).

Related substances. Carry out the test as described under 1.14.4 High-performance liquid chromatography using a stainless steel column (25 cm x 4.6 mm) packed with base-deactivated particles of silica gel, the surface of which has been modified with chemically-bonded octadecylsilyl groups (5 µm).

The mobile phases for the gradient elution consist of a mixture of Mobile phase A and Mobile phase B, using the following conditions:

- Mobile phase A: 2 volumes of acetonitrile R, 20 volumes of phosphate buffer pH 6.0 and 78 volumes of water R; and
- Mobile phase B: 65 volumes of acetonitrile R, 20 volumes of phosphate buffer pH 6.0 and 15 volumes of water R.

Prepare the phosphate buffer pH 6.0 by dissolving 3.50 g of potassium dihydrogen phosphate R and 1.70 g of tetrabutyl ammonium hydrogen sulfate R in 800 mL of water R, adjust the pH to 6.0 by adding sodium hydroxide (1 mol/L) VS and dilute to 1000 mL with water R.
After preparation, keep the solutions at about 6 °C or use an injector with cooling.

Prepare the following solutions using water R as diluent. For solution (1), use 1.0 mg of the test substance per mL. For solution (2), dilute a suitable volume of solution (1) to obtain a concentration of 5 µg of tenofovir disoproxil fumarate per mL. For solution (3), use 0.2 mg of fumaric acid R per mL.

For the system suitability test, prepare solution (4) by heating solution (1) carefully in a boiling water-bath for 20 minutes.

Operate with a flow rate of 1.0 mL per minute. As a detector, use an ultraviolet spectrophotometer set at a wavelength of 260 nm.

Maintain the column temperature at 30 °C.

Inject 20 µL of solution (4). The test is not valid unless the resolution between the principal peak (retention time about 40 minutes) and the peak due to tenofovir monosoproxil (impurity A) (with a relative retention of about 0.5) is not less than 25.

Inject alternatively 20 µL each of solutions (1) and (2) and (3). In the chromatogram obtained with solution (1), the following peak is eluted at the following relative retention, with reference to tenofovir (retention time about 40 minutes): fumarate about 0.15.

In the chromatogram obtained with solution (1):

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>Mobile phase A (% v/v)</th>
<th>Mobile phase B (% v/v)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–5</td>
<td>81</td>
<td>19</td>
<td>Isocratic</td>
</tr>
<tr>
<td>5–40</td>
<td>81–49</td>
<td>19–51</td>
<td>Linear gradient</td>
</tr>
<tr>
<td>40–60</td>
<td>49–0</td>
<td>51–100</td>
<td>Linear gradient</td>
</tr>
<tr>
<td>60–65</td>
<td>0</td>
<td>100</td>
<td>Isocratic</td>
</tr>
<tr>
<td>65–70</td>
<td>0–81</td>
<td>100–19</td>
<td>Return to initial composition</td>
</tr>
<tr>
<td>70–80</td>
<td>81</td>
<td>19</td>
<td>Re-equilibration</td>
</tr>
</tbody>
</table>
the area of any peak due to tenofovir monosoproxil (impurity A) is not greater than twice
the area of the principal peak obtained with solution (2) (1.0%);
the area of any other impurity peak is not greater than the area of the principal peak
obtained with solution (2) (0.5%), and
the areas of not more than two such peaks are greater than 0.4 times the area of the
principal peak obtained with solution (2) (0.2%).

• The sum of the areas of all peaks, other than the principal peak, is not greater than five
times the area of the principal peak obtained with solution (2) (2.5%). Disregard any
peak corresponding to the peak obtained in the chromatogram with solution (3) and any
peak with an area less than 0.1 times the area of the principal peak in the chromatogram
obtained with solution (2) (0.05%).

Assay. Dissolve 0.40 g, accurately weighed, in 30 mL of glacial acetic acid R1 and titrate with
perchloric acid (0.1 mol/l) VS, determine the end-point potentiometrically as described under
2.6 Non-aqueous titration, Method A. Each mL of perchloric acid (0.1 mol/l) VS is equivalent
to 63.55 mg of tenofovir disoproxil fumarate (C_{19}H_{30}N_{5}O_{10}P, C_{4}H_{4}O_{4}).

Impurities

A. (1-methylethyl) (8R)-9-(6-amino-9H-purin-9-yl)-5-hydroxy-8-methyl-5-oxo-2,4,7-
trioxo-5-λ^{5}-phosphononanoate (tenofovir monosoproxil), (synthesis-related impurity,
degradation product).
B. (1-methylethyl) (5RS,8R)-9-(6-amino-9H-purin-9-yl)-5-methoxy-8-methyl-5-oxo-2,4,7-trioxa-5-λ5-phosphanonoate.

C. Methyl (1-methylethyl) (5RS)-5-⎪[(1R)-2-(6-amino-9H-purin-9-yl)-1-methylethoxy]methyl]-5-oxo-2,4,6,8-tetraoxa-5-λ5-phosphananedioate, (synthesis-related impurity).

F. Bis(1-methylethyl) 9,9'-[methylenebis(imino-9H-purine-6,9-diyl)]bis[(8R)-5-hydroxy-8-methyl-5-oxo-2,4,7-trioxa-5-λ₅-phosphonanoate] (tenofovir monosoproxil dimer), (degradation product).

G. Bis(1-methylethyl) 5-{[(1S)-2-(6-amino-9H-purin-9-yl)-1-methylethoxy]methyl}-5-oxo-2,4,6,8-tetraoxa-5-λ₅-phosphonanedioate (tenofovir disoproxil (S)-enantiomer) [see under Manufacture].

H. 1-methylethyl propyl (5RS)-5-{[(1R)-2-(6-amino-9H-purin-9-yl)-1-methylethoxy]methyl}-5-oxo-2,4,6,8-tetraoxa-5-λ₅-phosphonanedioate, (synthesis-related impurity).
I. Bis(1-methylethyl) 5-[(1R)-2-(6-[[9-[(2R)-5-hydroxy-2,11-dimethyl-5,9-dioxo-3,6,8,10-tetraoxa-5-λ5-phosphadodecyl]-9H-purin-6-yl]amino)methyl]amino]-9H-purin-9-yl)]-1-methylethoxy)methyl]-5-oxo-2,4,6,8-tetraoxa-5-λ5-phosphananedioate (tenofovir di- and monosoproxil heterodimer), (synthesis-related impurity, degradation product).

J. Tetrakis(1-methylethyl) 5,5'-[(methylenebis[imino-9H-purine-6,9-diyl][2R]-propane-1,2-diyl]oxymethylene)]bis[5-oxo-2,4,6,8-tetraoxa-5-λ5-phosphananedioate] (tenofovir disoproxil dimer), (synthesis-related impurity, degradation product).
249

K. 9-(prop-1-enyl)-9H-purin-6-amine, [see under Manufacture].

250

and epimer at P

251

K1. (1-methylethyl) (5RS)-5-[[1R]-2-(6-amino-9H-purin-9-yl)-1-methylethoxy]methyl-1-10-methyl-5,9-dioxo-2,4,6,8-tetraoxa-10-aza-5-λ\textsubscript{5}-phosphaundecanoate, (synthesis-related impurity).

252

and epimer at P

253

LM. Ethyl 1-methylethyl (5RS)-5-[[1R]-2-(6-amino-9H-purin-9-yl)-1-methylethoxy]methyl-1-5-oxo-2,4,6,8-tetraoxa-5-λ\textsubscript{5}-phosphanonanedioate (synthesis-related impurity, degradation product).

254

MN. 9-[(R)-2-(Phosphonomethxy)propyl]adenine (synthesis-related impurity, degradation product).

[Note from the Secretariat. The structure of impurity M will be added at a later stage.]
Reference substances invoked

Tenofovir disoproxil fumarate RS.

Established International Chemical Reference Substance (ICRS).

Tenofovir disoproxil fumarate for epimer identification RS (containing tenofovir disoproxil fumarate and impurities G)

ICRS to be established.