VALIDATION
APPENDIX 6
GUIDELINES ON QUALIFICATION
(February 2018)
DRAFT FOR COMMENTS

Should you have any comments on the attached text, please send these to Dr S. Kopp, Group Lead, Medicines Quality Assurance, Technologies Standards and Norms (kopps@who.int) with a copy to Ms Xenia Finnerty (finnertyk@who.int) by 30 April 2018.

Medicines Quality Assurance working documents will be sent out electronically only and will also be placed on the Medicines website for comment under “Current projects”. If you do not already receive our draft working documents please let us have your email address (to bonnyw@who.int) and we will add it to our electronic mailing list.
<table>
<thead>
<tr>
<th>Activity</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussion of proposed need for revision in view of the current trends in validation during informal consultation on data management, bioequivalence, GMP and medicines’ inspection</td>
<td>29 June–1 July 2015</td>
</tr>
<tr>
<td>Preparation of draft proposal for revision of the main text and several appendices by specialists in collaboration with the Medicines Quality Assurance Group and Prequalification Team (PQT)-Inspections, based on the feedback received during the meeting and from PQT-Inspections, draft proposals developed on the various topics by specialists, as identified in the individual working documents.</td>
<td>July 2015–April 2016</td>
</tr>
<tr>
<td>Presentation of the progress made to the fiftieth meeting of the WHO Expert Committee on Specifications for Pharmaceutical Preparations (ECSPP)</td>
<td>12–16 October 2015</td>
</tr>
<tr>
<td>Discussion at the informal consultation on good practices for health products manufacture and inspection, Geneva</td>
<td>4–6 April 2016</td>
</tr>
<tr>
<td>Preparation of revised text by Dr A.J. van Zyl, participant at the above-mentioned consultation, based on the feedback received during and after the informal consultation by the meeting participants and members of PQT-Inspections</td>
<td>May 2016</td>
</tr>
<tr>
<td>Circulation of revised working document for public consultation</td>
<td>June 2016</td>
</tr>
<tr>
<td>Consolidation of comments received and review of feedback</td>
<td>August–September 2016</td>
</tr>
<tr>
<td>Presentation to the fifty-first meeting of ECSPP</td>
<td>17–21 October 2016</td>
</tr>
<tr>
<td>Preparation of revised text by Dr A.J. van Zyl based on the feedback received during the public consultation and the ECSPP meeting</td>
<td>March 2017</td>
</tr>
<tr>
<td>Circulation of revised working document for public consultation</td>
<td>February 2018</td>
</tr>
<tr>
<td>Consolidation of comments received and review of feedback</td>
<td>May–June 2018</td>
</tr>
<tr>
<td>Event</td>
<td>Date</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Discussion at the informal consultation on GMP and inspection, Geneva</td>
<td>July 2018 (tbc)</td>
</tr>
<tr>
<td>Circulation of revised working document for public consultation</td>
<td>August 2018</td>
</tr>
<tr>
<td>Consolidation of comments received and review of feedback</td>
<td>October 2018</td>
</tr>
<tr>
<td>Presentation to the fifty-third meeting of ECSPP</td>
<td>22–26 October 2018</td>
</tr>
<tr>
<td>Any other follow-up action as required</td>
<td>…</td>
</tr>
</tbody>
</table>
Background information

The need for revision of the published Supplementary guidelines on good manufacturing practices: validation (World Health Organization (WHO) Technical Report Series, No. 937, 2006, Annex 4) was identified by the Prequalification of Medicines Programme and a draft document was circulated for comment in early 2013. The focus of the revision was the Appendix on non-sterile process validation (Appendix 7), which had been revised and was adopted by the ECSPP at its forty-ninth meeting in October 2014.

The main text was sent out for consultation as Working document QAS/15.639 entitled Guidelines on Validation which constitute the general principles of the new guidance on validation.

The draft on the specific topics, the appendices to this main text, will follow. One of them, i.e. the Validation on qualification of systems, utilities and equipment, newly entitled Guidelines on qualification, constitutes this working document.

The following is an overview on the appendices that are intended to complement the general text on validation:

Appendix 1
Validation of heating, ventilation and air-conditioning systems
→ will be replaced by cross-reference to WHO Guidelines on GMP for HVAC systems for considerations in qualification of HVAC systems (update – working document QAS/15.639/Rev.1)

Appendix 2
Validation of water systems for pharmaceutical use
→ will be replaced by cross-reference to WHO Guidelines on water for pharmaceutical use for consideration in qualification of water purification systems

Appendix 3
Cleaning validation – consensus to retain

Appendix 4
Analytical method validation
→ will be replaced by update – working document QAS/16.671

Appendix 5
Validation of computerized systems
→ will be replaced by update – working document QAS/16.667

Appendix 6
Guideline on Qualification – updated text proposed in this working document
(new title)
Appendix 7

Brief background on the changes in this document

There was some confusion regarding the title. It is therefore suggested to change the title to GUIDELINES ON QUALIFICATION. In this way, the general principles in qualification are addressed which can be applied for systems, equipment, etc.

Based on the comments, the general chapters on objective and scope were written to make it clear that the guidelines address principles of qualification that can be applied, as appropriate, to premises, systems, utilities and equipment and to include the application of risk management principles.

Moreover, duplication was removed, logical flow of concepts addressed and aligned with international texts and the comments. The V Model has been removed based on the feedback received. In the former published text on qualification, protocol formats were included. These protocol formats were extracted from training materials and were intended to serve as examples. In view of the feedback that seemingly manufacturers took them as absolute examples to be used, these examples have been removed in the current version.
APPENDIX 6
GUIDELINES ON QUALIFICATION

1. Principle
2. Scope
3. Glossary
4. General
5. User requirement specifications
6. Factory acceptance test and site acceptance test
7. Design qualification
8. Installation qualification
9. Operational qualification
10. Performance qualification
11. Requalification
12. Qualification of “in use” systems and equipment

1. PRINCIPLE

1.1 In principle, premises, systems, utilities and equipment should be appropriately designed, located, installed, operated, cleaned, maintained and qualified to suit their intended purpose.

1.2 Quality management systems should be in place to ensure that these remain in a qualified state throughout their life cycle.

1.3 Products should be manufactured on qualified equipment.

2. SCOPE

2.1 These guidelines describe the general approach to qualification for, e.g. premises, systems, utilities and equipment.

2.2 The principles in these guidelines may also be applied to the qualification of instruments, analytical instruments and testing devices; where appropriate.

2.3 These may include and are not limited to: certain rooms; water purification systems; cleaning systems; heating, ventilation and air conditioning systems; compressed air systems; gas systems; steam systems; as well as production equipment and analytical instruments.

2.4 Separate guidelines in this series address other principles in validation such as process validation and cleaning validation (see references at the end of this document).
3. GLOSSARY

design qualification. Documented evidence that, e.g. the premises, supporting systems, utilities and equipment have been designed for their intended purposes and in accordance with the requirements of good manufacturing practices.

factory acceptance test. A test conducted, usually at the vendor’s premises, to verify that the system, equipment or utility, as assembled or partially assembled, meets expected specifications. (new)

installation qualification. The performance of tests to ensure that the installations (such as machines, measuring devices, utilities and manufacturing areas) used in a manufacturing process are appropriately selected and correctly installed and operate in accordance with established specifications.

operational qualification. Documented verification that the system or subsystem performs as intended over all anticipated operating ranges.

performance qualification. Documented verification that the equipment or system operates consistently and gives reproducibility within defined specifications and parameters for prolonged periods. (In the context of systems, the term “process validation” may also be used.)

site acceptance test. A test conducted at the site of use to verify that the system, equipment or utility, as assembled or partially assembled, meets expected specifications. (new)

system. A regulated pattern of interacting activities and techniques that are united to form an organized whole.

user requirement specifications. An authorized document that defines the requirements for use of the system, equipment or utility in its intended production environment. (amended)

utility. A system consisting of one or more components to form a structure designed to collectively operate, function or perform and provide a service such as electricity, water, ventilation or other. (new)

4. GENERAL

Note: The remainder of the text in these guidelines will refer to utilities and equipment as examples, even though the principles may be applicable to others such as premises and systems.

4.1 The validation master plan, or other relevant document, should specify the policy, organization, planning, scope and stages applied in qualification on site, and should cover, e.g. production, quality control and engineering.

4.2 Quality risk management principles should be applied in qualification.
4.3 The scope and extent of qualification and requalification should be determined based on the principles of impact assessment and risk management principles.

4.4 Qualification should be executed by trained personnel. Training records should be maintained.

4.5 Where appropriate, new premises, systems, utilities and equipment should be subjected to all stages of qualification. This includes the preparation of user requirement specifications (URS), design qualification (DQ), installation qualification (IQ), operational qualification (OQ) and performance qualification (PQ).

4.6 Justification should be provided where it is decided that not all stages of qualification are required.

4.7 Qualification should be done in accordance with predetermined and approved qualification protocols.

4.8 The results of the qualification should be recorded and reflected in qualification reports.

4.9 There should be a logical sequence for executing qualification including such as premises (rooms), then utilities and equipment

4.10 Normally, qualification stages should be sequential. (For example, operational qualification should follow after the successful completion of installation qualification.) In some cases, different stages of qualification may be executed concurrently.

4.11 Equipment should be released for routine use only once there is documented evidence that the qualification has been successful.

4.12 Certain stages of the qualification may be done by a supplier or a third party, subject to the conditions and responsibilities as defined in a written agreement between the parties. The contract giver remains responsible to ensure that the qualification is done in accordance with the principles of good manufacturing practices (GMP).

4.13 The relevant documentation associated with qualification, including standard operating procedures (SOPs), specifications and acceptance criteria, certificates and manuals, should be available.

4.14 Utilities and equipment should be maintained in a qualified state and should be periodically reviewed for the need for requalification. Requalification should be considered when changes are made.

5. **USER REQUIREMENT SPECIFICATIONS**

5.1 URS should be prepared for but not limited to, utilities and equipment, as appropriate.
5.2 URS should be used at later stages in qualification to verify that the purchased and supplied utility or equipment is in accordance with the user’s needs.

6. FACTORY ACCEPTANCE TEST AND SITE ACCEPTANCE TEST

6.1 Where a utility or equipment is assembled, or partially assembled at a site other than that of the purchaser or end-user, testing and verification may be done, based on quality risk management principles, to ensure that it is appropriate and ready for dispatch.

6.2 The checks and tests during factory acceptance test (FAT) should be recorded.

6.3 The acceptability of the assembly and overall status of the utility or equipment should be described in a conclusion of the report for the FAT, prior to shipment.

6.4 Tests, based on quality risk management principles, may be performed to verify the acceptability of the utility or equipment when it is received at the end-user. This is a site acceptance test (SAT).

6.5 The results of the tests should be recorded and the outcome of the acceptability of the utility or equipment should be recorded in the conclusion section of the report for the SAT.

7. DESIGN QUALIFICATION

7.1 DQ should demonstrate that the system, as designed, is appropriate for its intended use as defined in the URS.

7.2 A suitable supplier should be selected and approved for the relevant utility or equipment.

8. INSTALLATION QUALIFICATION

8.1 Utilities and equipment should be correctly installed, in an appropriate location.

8.2 There should be documented evidence of the installation. This should be in accordance with the IQ protocol which contains all the relevant details.

8.3 IQ should include identification, verification and installation of relevant components identified, e.g. services, controls and gauges.

8.4 Identified measuring, control and indicating devices, should be calibrated on site unless otherwise appropriately justified. The calibration should be traceable to national or international standards. Traceable certificates should be available.

8.5 The execution of the protocol should be recorded in the report.

8.6 The report should include, e.g. the title, objective, site, details of the supplier and manufacturer, system or equipment name and unique identification number, model and serial
number, date of installation, tests executed, components and their identification numbers or
codes and material of construction, actual results of tests and measurements, relevant procedures
followed for tests and certificates as applicable.

8.7 Deviations and non-conformances including those from URS, DQ and acceptance criteria
specified and observed during installation should be recorded, investigated, and corrected or
justified.

8.8 Normally, the outcome of the IQ should be recorded in the conclusion of the report,
before OQ is started.

8.9 Requirements and procedures for calibration, maintenance and cleaning should normally
be prepared during IQ or OQ.

9. OPERATIONAL QUALIFICATION

9.1 Utilities and equipment should operate correctly and their operation should be verified in
accordance with an OQ protocol. OQ normally follows IQ but depending on the complexity of
utility or equipment, it may be performed as a combined installation/operation qualification
(IOQ).

9.2 OQ should include but is not limited to the following:

- tests that have been developed from the knowledge of processes, systems and equipment
to ensure the utility or equipment is operating as designed;
- tests to confirm upper and lower operating limits, and/or “worst case” conditions.

9.3 Training of operators for the utilities and equipment should be provided and training
records maintained.

9.4 Calibration, cleaning, maintenance, training and related tests and results should be
verified to be acceptable.

9.5 Deviations and non-conformances observed should be recorded, investigated and
corrected or justified.

9.6 The results for the verification of operation should be documented in the OQ report
The outcome of the OQ should be recorded in the conclusion of the report, normally before PQ is
started.

10. PERFORMANCE QUALIFICATION

10.1 PQ should normally follow the successful completion of IQ and OQ. In some cases it
may be appropriate to perform PQ in conjunction with OQ or process validation.

10.2 PQ should include, but is not limited to the following:
tests, using production materials, qualified substitutes or simulated products proven to have equivalent behaviour under normal operating conditions with worst case batch sizes where appropriate;
- tests should cover the operating range.

10.3 Utilities and equipment should consistently perform in accordance with their design specifications and URS. The performance should be verified in accordance with a PQ protocol.

10.4 There should be records (e.g. PQ report) for the PQ to indicate the satisfactory performance over a predefined period of time. Manufacturers should justify the period over which PQ is done.

11. PERIODIC REVIEW AND REQUALIFICATION

11.1 Utilities and equipment should be maintained in a qualified state through the life cycle of the utility or equipment.

11.2 Utilities and equipment should be reviewed periodically to confirm that they remain in a qualified state and to determine the need for requalification.

11.3 Where the need for requalification is identified, this should be performed.

11.4 Risk management principles should be applied in the review and requalification and the possible impact of small changes over a period of time should further be considered.

11.5 Risk management principles may include factors such as calibration, verification, maintenance data and other information.

11.6 The qualification status and requalification due dates should be documented, e.g. in a qualification matrix, schedule or plan.

11.7 In case a utility or equipment in use is identified, where it had not been subjected to qualification, a qualification protocol should be prepared where elements of URS, design specifications, operation and performance are verified for acceptability. The outcome of this qualification should be recorded in a report.

Reference documents for additional reading

[Note from the Secretariat: The references below will be updated upon finalization of the related texts.]

See WHO TRS 970, 2012, Annex 2 for aspects to be considered for inclusion in qualification of water purification systems.
See WHO TRS 1010, 2018, Annex 8 for aspects to be considered for inclusion in qualification of heating, ventilation and air-conditioning (HVAC) systems.

See WHO TRS XXX for aspects to be considered for inclusion in qualification and validation of computerized systems (QAS working document QAS/16.667).

See WHO TRS 992, 2015, Annex 3 for aspects to be considered in process validation.

See WHO TRS XXX for aspects to be considered in analytical method validation (QAS working document QAS/16.671)
