REMDESIVIR INTRAVENOUS INFUSION

REMDESIVIRI INFUSIO INTRAVENO

Draft proposal for inclusion for The International Pharmacopoeia

DRAFT FOR COMMENTS

Please send any comments you may have on this draft working document to Dr Herbert Schmidt, Technical Officer, Norms and Standards for Pharmaceuticals, Technical Standards and Specifications (schmidt@who.int), with a copy to Ms Claire Vogel (vogelc@who.int) by 28 February 2021.

Our working documents are sent out electronically and they will also be placed on the WHO Medicines website (https://www.who.int/teams/health-product-and-policy-standards/standards-and-specifications/pharmaceuticals/current-projects) for comments under the “Working documents in public consultation” link.

If you wish to receive our draft guidelines, please send your e-mail address to jonessi@who.int and your name will be added to our electronic mailing list.

[Note from the Secretariat. It is proposed to include a monograph on Remdesivir intravenous infusion in The International Pharmacopoeia. The draft monograph is based on information provided by manufacturers and on laboratory investigations.]
REMDESIVIR INTRAVENOUS INFUSION

REMDESIVIRI INFUSIO INTRAVENO

Category. Antiviral.

Requirements
The intravenous infusion comply with the monograph on Parenteral preparations.

Definition. Remdesivir intravenous infusion is a sterile solution containing Remdesivir. It is prepared by reconstituting Remdesivir powder for concentrate for solution for infusion and diluting it with suitable diluents according to the manufacturer’s instructions.

Remdesivir powder for concentrate for solution for infusion
Description. A white or almost white amorphous powder or cake.

Storage. Remdesivir powder for concentrate for solution for infusion should be kept in sealed container, protected from moisture and light.

Manufacture. Remdesivir powder for concentrate for solution for infusion may contain solubilizing agents, like cyclodextrins.
The production method is validated to ensure that the active pharmaceutical ingredient is fully dissolved before lyophilization.

Requirements
The powder for concentrate for solution for infusion comply with the monograph for Parenteral preparations.

Definition. Remdesivir powder for concentrate for solution for infusion is a sterile material consisting of Remdesivir, with or without excipients. It is supplied in a sealed container and contains not less than 90.0% and not more than 110.0% of the labelled amount of remdesivir (C\textsubscript{17}H\textsubscript{35}N\textsubscript{6}O\textsubscript{8}P) per vial.
Identity tests

- Any two of tests A, B and C may be applied.

A. Carry out as described under 1.6 Spectrophotometry in the visible and ultraviolet regions. Use the test solution as prepared for “Assay”, Method B. The absorption spectrum of the solution, when observed between 220 nm and 400 nm, exhibits a maximum at about 245 nm and at about 275 nm. Where high-performance liquid chromatography with a diode array detector is available, the spectrum may be recorded with this detector and compared with the spectrum of the reference solution.

B. Carry out the test as described under 1.14.4 High-performance liquid chromatography using the conditions given under “Assay”, Method A. The retention time of the principal peak in the chromatogram obtained with solution (1) corresponds to the retention time of the peak due to remdesivir in the chromatogram obtained with solution (2).

C. Carry out as described under 1.14.1 Thin layer chromatography using silica gel R6 as the coating substance and a freshly prepared mixture of ethyl acetate R, methanol R and glacial acetic acid R (90:9:1 V/V/V) as the mobile phase. Apply separately to the plate 2 µL of each of the following two solutions. For solution (A), add 20 mL of methanol R to a vial and re-insert the stopper. Swirl the vial content gently and then mix well by repeated inversions. Transfer the dispersion into a 100 mL volumetric flask and add 60 mL of methanol R. Sonicate the flask for 15 minutes, dilute to volume with methanol R and filtrate the dispersion. For solution (2), use a solution containing 1 mg of remdesivir RS per mL of methanol. After removing the plate from the chromatographic chamber allow it to dry in air or in a current of air. Examine the chromatogram under ultraviolet light (254 nm). The principal spot in the chromatogram obtained with solution (A) corresponds in position, appearance and intensity with the spot due to remdesivir in the chromatogram obtained with solution (2).

Clarity and colour of the solution. A solution, containing 0.10 g of remdesivir in 20 mL of water R, is clear and not more intensely coloured than reference solution BY5, when compared as described under 1.11.2 Degree of coloration of liquids, Method I.
**Related substances.** Carry out the test as described under 1.14.4 High-performance liquid chromatography, using a stainless steel column (4.6 mm x 15 cm) packed with particles of silica gel, the surface of which has been modified with chemically-bonded octadecylsilyl groups (3 µm).

Use the following conditions for gradient elution:

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>Mobile phase A (% v/v)</th>
<th>Mobile phase B (% v/v)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–3</td>
<td>97</td>
<td>3</td>
<td>Isocratic</td>
</tr>
<tr>
<td>3–45</td>
<td>97 to 30</td>
<td>3 to 70</td>
<td>Linear gradient</td>
</tr>
<tr>
<td>45–53</td>
<td>30</td>
<td>70</td>
<td>Isocratic</td>
</tr>
<tr>
<td>53–54</td>
<td>30 to 97</td>
<td>70 to 3</td>
<td>Return to initial composition</td>
</tr>
<tr>
<td>54–65</td>
<td>97</td>
<td>3</td>
<td>Re-equilibration</td>
</tr>
</tbody>
</table>

Operate with a flow rate of 1.0 mL per minute. As a detector, use an ultraviolet spectrophotometer set at a wavelength of 237 nm. Maintain the column temperature at 30 °C.

Prepare as a diluent a mixture of 50 volumes of methanol R and 50 volumes of water R. Prepare the following solutions. For solution (1), gently remove the stopper from a vial and retain the stopper. Add 20 mL of water R to the vial and re-insert the stopper. Swirl the vial content gently and then mix well by repeated inversions until the content of the vial is fully dissolved. Transfer the solution into a 200 mL volumetric flask and dilute to volume with the diluent.

For solution (2), dilute 1.0 mL of solution (1) to 100.0 mL with the diluent. For solution (3), dilute 1.0 mL of solution (2) to 10.0 mL with the diluent. For solution (4), dissolve 5 mg of remdesivir for system suitability RS (containing remdesivir and impurity A) in 1 mL of methanol R and dilute to 10 mL with the diluent. Inject alternately 5 µL each of solutions (1), (2), (3) and (4).

The impurities are eluted, if present, at the following relative retentions with reference to remdesivir (retention time about 28 minutes): impurity E about 0.18; impurity G about 0.46; impurity H about 0.51; impurity C and impurity D about 0.84; impurity A about 0.98; impurity B about 1.03 and impurity F about 1.30.

*A YMC Hydrosphere column has been found suitable.
The test is not valid unless in the chromatogram obtained with solution (4), the resolution between the peaks due to impurity A and remdesivir is at least 1.5. Also, the test is not valid unless in the chromatogram obtained with solution (3), the peak due to remdesivir is obtained with a signal-to-noise ratio of at least 15.

In the chromatogram obtained with solution (1):
- the area of any peak corresponding to impurity E, when multiplied with a correction factor of 0.5, is not greater than the area of the peak due to remdesivir in the chromatogram obtained with solution (2) (1.0 %);
- the area of any peak corresponding to impurity F, when multiplied with a correction factor of 1.2, is not greater than 2 times the area of the peak due to remdesivir in the chromatogram obtained with solution (3) (0.2 %);
- the area of any peak corresponding to impurity G, when multiplied with a correction factor of 0.8, is not greater than 1.5 times the area of the peak due to remdesivir in the chromatogram obtained with solution (2) (1.5 %);
- the area of any other impurity peak is not greater than the area of the peak due to remdesivir in the chromatogram obtained with solution (3) (0.2 %).
- The sum of the areas of all impurity peaks, including the corrected areas of any peaks corresponding to impurities E, F and G, is not greater than three times the area of the peak due to remdesivir in the chromatogram obtained with solution (2) (3.0%).

Disregard all peaks with an area of less than the area of the peak due to remdesivir in the chromatogram obtained with solution (3) (0.1%).

**Assay**
- Either test A or test B may be applied.

A. Carry out the test as described under **1.14.4 High-performance liquid chromatography**, using a stainless steel column (4.6 mm x 25 cm) packed with end-capped particles of silica gel, the surface of which has been modified with chemically-bonded octadecylsilyle groups (5 µm). Prepare a phosphoric acid solution by diluting 1.2 mL of phosphoric acid (~1440 g/L) TS to 1000 mL with water R. As the mobile phase, use a mixture of 35 volumes of the phosphoric acid solution and 65 volumes of methanol R. Operate with a flow rate of 1.0 mL per minute. As a detector, use an ultraviolet spectrophotometer set at a wavelength of 237 nm. Maintain the column temperature at 25 °C.

Prepare as a diluent a mixture of 50 volumes of methanol R and 50 volumes of water R.

---

*A YMC-Pack ODS-A column has been found suitable.*
Prepare the following solutions. For solution (1), gently remove the stoppers from 10 vials and retain the stoppers. Add 20 mL of water R to each vial and re-insert the stoppers. Swirl the vial contents gently and then mix well by repeated inversions until the contents of the vials are fully dissolved. Transfer the solutions into a single 500 mL volumetric flask. Add 10 mL of water R to each vial, re-insert the stoppers, mix and transfer the rinses to the volumetric flask. Dilute to volume with water R. Dilute 5.0 mL of this solution to 50.0 mL with the diluent. For solution (2), weigh 40.0 mg of remdesivir RS into a 200 mL volumetric flask. Dissolve with 10 mL of methanol R and make up to volume with water R.

Inject alternately 5 µL each of solutions (1) and (2) and record the chromatogram for 25 minutes.

Measure the areas of the peaks corresponding to remdesivir obtained in the chromatograms of solutions (1) and (2) and calculate the percentage content of \( C_{17}H_{35}N_{6}O_{8}P \) per container, using the declared content of \( C_{17}H_{35}N_{6}O_{8}P \) in remdesivir RS.

B. Prepare solution (1) as described under “Assay”, Method A. Dilute 3.0 mL of this solution to 20.0 mL with a mixture of 50 volumes of methanol R and 50 volumes of water R. Measure the absorbance of the resulting solution as described under 1.6 Spectrophotometry in the visible and ultraviolet regions in a cuvette with an optical pathlength of 10 mm at the maximum at about 275 nm, using the diluent as the blank.

Calculate the percentage content of \( C_{17}H_{35}N_{6}O_{8}P \) per container using the absorptivity value of 9.984 for remdesivir \( A_{1\text{cm}}^{1\%} = 99.84 \).

Impurities
The impurities limited by the requirements of this monograph include those listed in the monograph on Remdesivir.

Reference substances to be established
Remdesivir for system suitability RS (containing remdesivir and impurity A)
- International Chemical Reference Substance to be established.

Remdesivir RS
- International Chemical Reference Substance to be established.

***