Dear WHO Secretariat,

Thank you for the opportunity to comment on the Draft WHO Global Action Plan on Physical Activity 2018-2030. The Action Plan has much to commend it. This comment focuses on two aspects that are mentioned in the plan:

1. lower speeds and traffic calming in urban areas, including 30 km/h speed restrictions in residential neighbourhoods;
2. the inclusion of “play” as a focus for action.

These two issues are critical for any action plan on physical activity, yet there is limited understanding of their impact. They both have the capacity to significantly increase levels of physical activity across entire populations, and are likely to be much more effective than other strategies, including the promotion of sport. There may also be synergistic effects when these strategies are used in combination. To date they have received limited attention in many nations, despite substantial research evidence on the value of low speed residential streets and the role of play in children’s physical activity. This comment provides some explanation of why these strategies are so important.

There is often resistance to both the lowering of speed limits in urban areas, and the provision of more opportunities for children’s play. Lower speed limits are often opposed due to (unjustified) claims that they are an infringement of civil rights. Children’s play is sometimes restricted because of concerns about children being injured in play. However, the research on lower speeds and children’s play demonstrates that the public health benefits of both, through increased physical activity, are clear.

Lower Speeds and traffic calming in urban areas

One reason that children in many nations walk and cycle less now than in previous generations is that parents are concerned about traffic and stranger danger (Whitzman et al., 2010). A common response by parents to these concerns is an individualistic response – to drive or accompany their children, or restrict their mobility, rather than let them travel independently. An alternative response, involving collective action to tame traffic in areas where children move, can effectively overcome these concerns.
This collective action has been identified as an urgent and highly cost-effective public health intervention: a proven area-wide ‘vaccine’ against serious injury (Global Initiative for Child Health & Mobility, 2016). Recognising that “low speeds save lives”, this Global Initiative called for the reduction and enforcing of “traffic speeds to a level safe for children everywhere, prioritising low speed zones in residential areas and near schools” (Global Initiative for Child Health & Mobility, 2016).

Yet the argument for reducing the speed of motorised traffic involves more than protecting the lives of children; it is also about protecting other rights of the child. The UN Convention on the Rights of the Child, Article 31, recognises children’s right to play: the right of every child to rest, leisure, play, recreational activities and free and full participation in cultural and artistic life. However, the UN Committee on the Rights of the Child has concerns about the lack of recognition by Governments of these rights. In 2013 the UN issued a General Comment calling on governments to elaborate their plans for legislating, planning and funding to provide for the Rights of the Child.

An important part of creating the context for the realisation of Article 31 is the creation of environments that are “sufficiently free from pollution, traffic and other hazards that impede free and safe movement” (IPA (International Play Association), 2013). Such environments require the introduction of measures in consultation with children. One important measure is municipal planning that prioritises environments that promote the wellbeing of children, including “zones with priority for pedestrians, players and bikers over motorized traffic” (IPA (International Play Association), 2013). These zones create more child friendly environments that encourage children’s active transport.

Since motorised vehicles began to dominate cities, designing and building roads that maximize travel speed has been the central goal of transportation engineering and urban transport planning. In cost-benefit analyses of new transport infrastructure, the main benefit is typically the time savings that are assumed to arise from increasing the speed of traffic (Mees, 2000). There are serious ethical issues associated with seeking time savings from increased speed: “We reject the ethically problematic paradigm in which loss of human life from increased speeds of travel is an accepted price worth paying for esoterically defined gains in time savings” (Richter, Berman, Friedman, & Ben-David, 2006, 126).

The research on road traffic crashes has clearly established that reducing the speed of motorised traffic reduces both the frequency and severity of accidents (Brown, Moodie, & Carter, 2017). This applies to all road users, including children. Speed limits of 30 km/h in any environment with a pedestrian and cyclist presence as well as motorised traffic, are now considered a central component of a safe transport system (Howard, Mooren, Nilsson, Quimby, & Vadeby, 2008). When streets become safer, both adults and children are more likely to use them for walking and cycling and other active modes.

While lower speeds, particularly in residential neighbourhoods, unarguably make streets safer for vulnerable road users, and create environments where children’s active transport can be more safely increased, different strategies have been employed to achieve lower motorized traffic speeds. The simplest approach, and also the least effective in reducing speeds in any particular street,
is to lower the posted speed limit. While this is seen as less effective in reducing speeds than physical traffic calming, it can also be argued to be a cost-effective measure, due, for example, to the potential to quickly apply lower speed limits across a large area. Another approach is to use a range of physical traffic calming devices to slow the traffic, perhaps in combination with lower posted speed limits. In Britain this is referred to as “low speed zones”. This can be done with either 20 mph/30 km/h speed limits or with very low speeds (10 mph or less, such as walking speeds), as in the Dutch Woonerf, or British Home Zones (outlined below). There is also a strategy known as “psychological traffic calming”, which relies on more subtle strategies to reduce the speed of traffic (Engwicht, 2005). Related to this is the strategy of removing any separation between traffic and people to make streets safer by forcing motorists to take more care and make eye contact with vulnerable road users. Perhaps paradoxically, this slows the traffic and increases safety for pedestrians and cyclists, including children (Hamilton-Baillie, 2005). Another strategy is the “play street” which involves the temporary closing of a residential street to motorized vehicles and the promotion of their use as play space (Tranter, 2016).

Lower Posted Speed Limits

The laws of physics help to explain why lower speeds are safer for all road users. Kinetic energy is directly proportional to the mass of the object and to the square of its velocity. This means that if a car is travelling twice as fast, it has four times the kinetic energy, and can do four times the amount of damage. Hence a slight increase in speed can have devastating impacts on pedestrian injury. Pedestrian “fatality risk at 50 km/h [is] more than twice as high as the risk at 40 km/h and more than five times higher than the risk at 30 km/h” (Rosén & Sander, 2009, 536). In addition, the likelihood of avoiding a collision is significantly greater at lower speeds due to greatly reduced stopping distances.

Few motorists have an appreciation of the substantial increases in risk accompanying even minor increases in speed. Svenson et al. (2012, p. 488) explain how 30 km/h, compared with 50 km/h driving speed, results in a child not being hit by a car (30 km/h) and being killed or seriously injured (50 km/h). Due to increased travel during reaction time and stopping time “a driver who could stop from 30 km/h in front of an obstacle would hit that obstacle at a speed of 50 km/h if she drove at 50 km/h under the same conditions”.

The introduction of 20 mph/30 km/h speed limits in many cities is based on a sound understanding of the ability of the human body to withstand impact. Humans have evolved to withstand the impact resulting from colliding with an object at maximum running speed: “protection from impact above such speeds was evolutionary unnecessary” (Hamilton-Baillie, 2005, 44). As Hamilton-Baillie explains, there is a kink in graphs showing the relationship between impact speed and severity of pedestrian injury. There is a very sharp increase in severity above 20 mph: the chances of a pedestrian surviving being hit by a car decrease rapidly above an impact speed of 20 mph or 30km (Brown et al., 2017).

Another aspect of understanding the value of lower vehicle speeds for children’s active transport is the psychology of low speed streets. When motorized vehicles travel at 30 km/h (instead of 50), this changes the psychological feel of
the streets: the streets feel safer. Part of the reasoning for this increased feeling of safety may be that retaining eye contact with other people becomes much more difficult when we move faster than a fast running speed: eye contact between motorists and other road users decreases rapidly as speeds increase above 20 mph (Hamilton-Baillie, 2005). As we move faster, our field of vision also narrows, so drivers become less aware of pedestrians the faster they travel. The verbal and non-verbal communication between road users is an important aspect of an effectively functioning urban public space. “Thus it appears that speed may be a factor in urban quality in a wider context than simple safety and accident reduction” (Hamilton-Baillie, 2005, 45).

As a result of the increased feelings of safety that exist in low-speed streets, more people of all ages use the streets as pedestrians and cyclists, thus creating a “safety in numbers” effect (Jacobsen, 2003). Parents are more confident allowing children to play in (or beside) the street, both because of reduced road traffic danger, and also because of reduced stranger danger associated with increased surveillance in communities with stronger social cohesion arising from more frequent face to face interactions (Tranter, 2016).

Other feedback impacts from lower speed limits can create a more conducive environment for physical activity. When lower speeds in residential areas encourage more walking and cycling, this can lead to more local shopping, and hence more viable local shops (especially if the shops are located near local schools). This in turn creates a positive cycle, where more people use the local facilities as they become more attractive, which in turn strengthens local communities, which creates savings for governments in terms of health costs and transport costs.

Lower speed limits are much cheaper to implement on an area-wide level than physical traffic calming. Thus, even if they are less effective than low speed zones in particular streets, they have the advantage of being cost-effective. As King and Semlyen (2016) argue, unless the cost of implementation is considered, any attempt at comparing the value of low speed zones versus speed limits alone is futile. The cost of physical traffic calming is about £60,000 per km compared to £1,100 per km for speed limits alone. This means that for the cost of 1 km of physical calming, 50 km of roads could have 20 mph limits: or about 250 people compared to 12,500 people being influenced (King & Semlyen, 2016). King and Semlyen go on to argue that each 1 mph reduction in average speed is likely linked to 5-6% fewer casualties. A reduction of 1-2 mph over a whole network leads to “much more benefit to more residents than a large reduction on a few streets in a zone” (King & Semlyen, 2016, 66). The arguments of King and Semlyen are supported by other researchers: “it is a fundamental principle of epidemiology that small reductions in risk in the entire population save more lives than do big reductions in risk in the small number of high-risk individuals” (Richter et al., 2006, 140).

The spatial extent of the speed limits is important for changing public attitudes about speed in urban areas. If speed limits are consistently applied over large areas this “conveys the message that 20mph is a suitable, normal speed in residential areas. However if they are only applied in small areas, so that a cross city trip encounters a number of different speed limits, then the same message will
not be conveyed” (Calvert, 2015). Isolated physically calmed zones convey a message “speed up” as drivers exit the zones (King & Semlyen, 2016). If lower speed limits are to be effectively employed it is important that 20 mph limits are seen “as the new norm for urban areas” (Toy, Tapp, Musselwhite, & Davis, 2014, 165).

A sensible strategy for lowering speeds across large areas of a city would be to start with lower speed limits (e.g. 20 mph) and progressively introduce a range of physical traffic calming measures. This should be accompanied by education campaigns explaining the value of the lower speed limits, along with ongoing consultation with local communities. Enforcement of the speed limits is also important (Brown et al., 2017). Speed cameras for example have been shown to have an immediate and significant impact on both deaths and case fatality rates (Richter et al., 2006). However, enforcement alone is likely to lead to community backlash.

The first city to introduce lower speed limits across an entire urban area was Graz, Austria. In 1992 30 km/h speed limits were introduced across the city, on all streets except a few priority roads, where the limit was 50 km/h. When this was first proposed, the majority of citizens in the city were opposed to the lower speed limits. Using the argument that people could not effectively judge a situation that they had not experienced, the government introduced the lower speeds despite the low public approval. Within two years of the introduction of the lower speed limits, there was majority support for the limits, even from motorists: they appreciated the increased livability of the city (Hoenig, 2000)

Physical Traffic Calming

Physical traffic calming strategies are often used to reduce motorized traffic speed and traffic volume in urban areas. Traffic calming has been successfully implemented in cities throughout the world, with the primary aims of reducing environmental and safety problems created by motorized traffic, altering driver behavior, and improving the overall conditions for pedestrians and vulnerable road users. Posted speed limits, changes to street alignments, street narrowing, vehicular obstacles and other design tactics act to lower travel speeds. Area-wide traffic calming schemes are commonly implemented in residential neighbourhoods, sometimes in combination with a clear road hierarchy to direct through traffic away from residential streets. In some cases, streets are closed off to through traffic (Whitzman et al., 2010).

Whilst the main aim traffic calming is usually to decrease the frequency and severity of road crashes there may be an increase in active transport “if the actual and/or perceived safety of walking and cycling for transport improves ... the perception of risk plays a significant role in the decision of whether to engage in active transport for both adults and children” (Brown et al., 2017). Traffic calming may be an important strategy for increasing levels of active transport, particularly in nations with relatively low levels of walking and cycling. Brown et al (2015) in a scoping review of 71 studies examining traffic calming and active transport found that several studies “reported significant associations between safety or perceptions of safety and walking and cycling for transport” (Brown et al., 2017).

A recent large-scale US national study concluded that traffic calming was significantly associated with higher levels of children’s active travel to elementary
(primary) school (Nicholson et al., 2014): “schools surrounded by more traffic calming measures had higher reported rates of student active travel” (p.24). \{ Research in Britain quantified increases in active travel associated with traffic calmed 20 mph zones. One study reported increases in active travel of between 12 and 25\% (in a Bristol study) and a threefold increase in the level of cycling to schools in Edinburgh (Jones & Brunt, 2017).

The Shared Street Approach: Woonerven and Home Zones

Home zones and Woonerven represent a specific type of physical traffic calming. In the 1970s a new residential street layout was introduced in the Dutch city of Delft. Instead of segregating pedestrians and cars, it allowed the integration of motorised traffic and pedestrian activity – the sharing of the street space (Ben-Joseph, 1995). This approach became known as the “woonerf” meaning “living yard” (woonerven plural) and was given legal status by the Dutch government. Similar street models have emerged in many western nations, including Europe, Japan, Australia, New Zealand and Israel. These very low speed streets, where cars were permitted and expected to proceed at a very slow pace, incorporated radical designs that removed the distinction between pavements for pedestrians and carriageways for cars, reinforcing the idea that the “woonerf” is meant to be a “shared space” where pedestrians and children could reclaim the street space (Hass-Klau, 1990). Studies of shared streets in several nations have found considerable reductions in traffic accidents, increased social interaction and play, and a high degree of satisfaction by the residents (Ben-Joseph, 1995).

Psychological Traffic calming

Physical traffic calming, such as speed humps and chicanes, can be very effective in reducing motor vehicle speed and accidents, but can also be unpopular and expensive. Alternative traffic calming techniques make use of psychological (non-physical) measures, which can significantly reduce driving speeds. One proponent of psychological traffic calming identified three broad themes in this approach: uncertainty, intrigue and humour (Engwicht, 2005). In his 2005 book *Mental Speed Bumps*, Engwicht argued that drivers drive more slowly when there is uncertainty about whether people (including children) will be on the street. They also are willing to drive more slowly when they are intrigued by something, such as someone painting a table on the side of the road: if streets can inspire human curiosity, drivers slow down to observe the environment. In terms of humour, drivers are rarely in a hurry if they are amused.

In contrast to forcing horizontal or vertical deflection of vehicles to slow vehicles, psychological design principles can generate lower speeds by: more complex street environments, limitation of distant views, disturbing linearity, creating uncertainty, increasing roadside activity, or changes to perception that make the streets seem less safe (Kennedy, Gorell, Crinson, Wheeler, & Elliot, 2005).

Temporary changes to tame traffic: play streets

A different approach to taming traffic is provided by the “play streets” model: temporary closing of streets to motorised traffic to allow children to use the street for play. The play street model promoted by “Playing out” began on one street in
Bristol in 2009. By 2017 more than 500 streets across Britain had become play streets at certain times.

Closing streets for brief periods (a few hours) can be easily implemented without any major built environment changes. This means that play streets have the potential to be implemented in a large number of streets quickly and cheaply. Many street closures occur at least once a month. Procedures for operating play streets successfully have been developed by the UK organisation “Playing Out”. This organisation believes that 20 mph zones likely complement street play initiatives.

Similar street play schemes exist in other nations, including Belgium, with is Speelstraat program which operates in a similar way to the play streets in Britain or the US: “residents formally request the city government to temporarily close off a residential street to enable children to play” (Tranter, 2016, 19). A limitation of the play street concept is that children’s play on streets is seen as something that can only be allowed under rare and regimented conditions. The “Playing Out” organization acknowledges this limitation, arguing: “We are aware that the current model is not the long-term answer … but until a real culture of playing out is restored it is good to feel that there is a way to realize some of the benefits of street play right now” (Playing Out, 2014b).

Street play closures make a significant contribution to children’s levels of physical activity. One study found that children were three to five times more active during the street play sessions than they were on a typical day after school (Ferguson, 2017). There is also potential for play streets to have a broader impact on dominant cultural norms about the use of streets. If clusters of street closures can be developed, this helps to “challenge the current dominant social norm that streets are largely for motorised transport only” (Page, 2016, 6). In addition to play streets, other strategies can be employed to increase children’s physical activity in play (Hyndman, Benson, & Telford, 2016).

Strategies to promote children’s play

Play is mentioned in the draft Global Action Plan, which is encouraging. However, given the immense value of play for promoting physical activity, it could be given much more emphasis in the document. Much of the focus for increasing physical activity has been directed to organized sporting activities. While sport and organized exercise program have some value, they also have serious limitations for promoting physical activity. Walking or cycling to school can expend more calories than school organized physical exercise programs (Whitzman & Pike, 2007).

Although sport may promote activity for children who enjoy it, many children have little interest or aptitude in sport. Most importantly, sport is not play and should not be seen as a substitute for it. Children with poor coordination, or who are overweight, are less likely to be interested in sport. Such children may already be less active. Many vigorous ‘active’ games, moreover, require children to wait their turn; hence, the total level of activity may be less than children engaged in unstructured play (Freeman & Tranter, 2011, 67). To compound the problem for the less physically adept children, some sporting games have elimination rules, where the least capable children get the least activity. There can also be clear gender biases in sporting or active games in school grounds. In
schools dominated by designated sporting spaces (e.g. ovals or courts), these are typically dominated by boys, particularly boys who are more physically competent (Dyment et al., 2009). Girls, generally, and the less physically competent boys are often excluded from participating in these activities (Barbour, 1999) and, to some extent, become cast as outsiders.

Another problem with children's sport in rich nations is that children are driven to their sporting events. This creates considerable traffic, which makes the streets less safe for vulnerable road users, and hence discourages the use of streets for walking, cycling, social interaction and playing. In addition, sport as currently practiced in many nations, is associated with the promotion of many unhealthy products, including fast food and alcohol.

Low speed neighbourhoods provide opportunities to reclaim residential streets as play space, which provides a boost to physical activity by both children and adults. “Creating a safe play space near urban children’s homes by the Play Street intervention is effective in increasing children’s Moderate-to-vigorous physical activity (MVPA) and decreasing their sedentary time” (D’Haese, Van Dyck, De Bourdeaudhuij, Deforche, & Cardon, 2015).

There are multiple advantages of using streets as play space to promote physical activity. Under the appropriate conditions, streets provide stimulating play activities where it is arguably most needed by children – within walking distance from children’s homes. This is particularly important for younger children, especially girls, whose home range is usually more restricted than for boys. Children who can safely play on their local streets are not dependent on their parents to drive (or accompany) them to local parks or sports grounds. Street play provides an alternative outdoor activity for children who have no interest or capacity for organised sport. This is particularly important for some adolescent girls, for whom structured team sports are seen as overly competitive activities requiring physical skills that not all young people have. When children are limited to engaging in adult organised activities or play in formal playgrounds, this reduces their opportunities for unstructured play “particularly the kind of free play that develops really important life skills, their physical well-being and their sense of belonging” (Playing Out, 2014a).

Allowing children to play in their streets allows children to engage in play that they want to participate in, where they have control over the rules and format of their games, in contrast with organised sporting or cultural activities, where children are obliged to play by the rules designed by adults. The hard surfaces of the street are also ideal for many ball games, from informal cricket and football, to handball and tennis. Street play provides for considerable flexibility and for the creation of children’s own playspace features. For example, they can bring play objects (e.g. balls, furniture) from their homes to use in games in the street. Streets also provide opportunities for creative and imaginative play (Goodyear, 2012)

If the streets are safe enough for children to play in, they are also safe enough for children to use to walk or cycle to other play spaces in their neighbourhoods: to experience some level of independent mobility that would not be available to them otherwise. This independent mobility is of value for children’s social, physical and emotional development, as well as their socialisation with the
While street play provides children with freedom, it also provides them with a greater feeling of security in their play as parents and other adults can keep an eye out for children, or listen for any signs that their children may need support.

Residential streets are also important for the recreational activities of older children and teenagers. Parkour and skating are two examples of how older children use the streets in playful ways. Parkour is an activity where the aim is to get from A to B in the most efficient way, using only the power of the human body, and with the aim of keeping momentum without causing damage. It is a form of movement usually practiced in cities and involves seeing the potential for movement in a different way from how it is viewed by most people (Gilchrist & Wheaton, 2011). Parkour differs from traditional sporting activity in that it is more inclusive and less competitive and rule bound, and provides risk taking with bounds: in short it is more 'playful'. Parkour has been seen to have potential in encouraging youth engagement in their local community, as well as physical activity and well being in ways that traditional sport fails to achieve (Gilchrist & Wheaton, 2011).

As well as benefits for children, there are clear benefits for adults in neighbourhoods where children can safely play on the streets. Parents stand to benefit from reclaiming the streets for play. In the short term, they benefit from increased freedom from the time pressures associated with having to transport children to organised play activities. In the longer term, they are likely to appreciate the greater resilience and independence created by allowing children to play. The quality of the local environment is also enhanced when children play locally in their streets. When this play takes the place of adult-organised activities such as sport, this can significantly reduce motor vehicle trips, and related health impacts (e.g. pollution). When streets are safe enough for play, children are also more likely to be allowed to walk or cycle to school, which can have significant effects on reducing traffic volumes. When children use streets, this also helps to develop stronger local ties between adults, as children are very effective at breaking down the learned reserve between adults. Thus in a situation where children play on the streets, it is also more likely that local adults will know local children. All of these features of streets as play space make them attractive places for play, which provides levels of physical activity that might be higher than in many organised sporting events.

As well as increasing the opportunity for play in residential streets, there are strategies for increasing children’s play in school grounds. One of these strategies involves the use of loose parts materials, in combination with a risk reframing of parents and teachers to help them accept that children’s play involves some risk, and that it is appropriate to expose children to low-stakes risks. Exposure to these low-stakes risks is important in developing children’s resilience.

An intervention to promote children’s active, risk-taking play has shown that the introduction of loose materials (e.g. old tyres, milk crates) into school grounds has a significant impact on increasing levels of children’s activity MVPA and decreasing sedentary activity (Engelen et al., 2013). In this study, loose materials provide a constantly varying source of stimulation for children, in contrast to the fixed play equipment or sporting materials that are designed for a...
specific use (see http://sydney.edu.au/health-sciences/sydney-playground-project/). Loose materials have no single or even obvious play purpose, and children must use their imagination to turn them into play objects. Large loose materials also require cooperative play when children are unable to move them by themselves. Details of this approach are available in several publications (Bundy et al., 2009; Bundy et al., 2011; Hyndman & Lester, 2015)

Conclusion

Low speed residential streets provide a valuable opportunity to increase physical activity for both adults and children. This deserves to have much more attention from local and national governments throughout the world. A widespread shift to lower speed limits is likely to have benefits in reduced road crash casualties, lower levels of air pollution and increased active travel. “It could be an extremely important public health intervention” (Jones & Brunt, 2017).

Children’s play in school grounds provides another vital opportunity for increasing physical activity. Children spend considerable time each school day in their school grounds. Using an intervention that introduces loose materials into school grounds is a low-cost intervention that can be introduced in schools in any area: many materials are available at no or minimal cost.

There is now growing international support for strategies to reduce the speed of motorized traffic. This comes from organisations as diverse as UNICEF, UNEP, the World Resources Institute, Institute for Transport and Development Policy, and the FiA Foundation, all of which support the Global Initiative for Child Health and Mobility, which argues:

> “To ensure a ‘Safe System’ in which serious injury to children is prevented, urban traffic speeds on residential streets and on school routes where traffic and children come into direct contact must be kept below 30km/h. If this can’t be enforced the road must be designed to physically prevent higher speed” (Global Initiative for Child Health & Mobility, 2016)

Globally, the move toward taming traffic has a long way to go before residential streets are places where children’s active transport is encouraged. A 2009 survey found that only 29% of 174 nations set speed limits of 50 km/h or lower. This likely reflects the reticence of governments to reduce speeds, possibly due to perceived public opposition, which as the Graz example (see above) indicates, reduces when residents experience the benefits of low-speed areas (Ameratunga, 2009).

A number of publications provide guidelines for the implementation of strategies to tame traffic. For an overview of the more conventional approaches, a report sponsored by the Global Road Safety Partnership provides a good summary (Howard et al., 2008). For a discussion of psychological traffic calming *Mental Speed Bumps* (Engwicht, 2005) and papers by Hamilton-Baillie are valuable (Hamilton-Baillie, 2005, 2008). An outline of the arguments for reclaiming residential streets as play space and for lower speed limits in residential streets can be found in Tranter (2016). Guidelines for developing play streets are provided online by *Playing Out*.
Richter et al. (2006) in their analysis of the impacts of speed on road safety, note that there are major barriers to accepting the role of speed in road fatalities. Many of these barriers also impede progress toward taming traffic to enhance children’s active transport. In their list of eight barriers is the point that “speed sells”, and also that there are ideological objections to speed control. They suggest that “pseudo conservative opposition is based on libertarian opposition to regulation, and fears of loss of privacy, and is similar to objections to gun control laws ... [claiming] an infringement of civil rights” (Richter et al., 2006, 144). The authors’ response “is that life and safety are the most basic of all human rights, and governments have a responsibility to protect these rights” (Richter et al., 2006, 144). As outlined at the start of this submission, governments also have responsibility to protect the rights of children to play and to provide environments that allow free and safe movements for children. Taming traffic, reducing motorized vehicle speeds and providing opportunities for children’s play are necessary steps in protecting these rights.

References

IPA (International Play Association). (2013). Summary United Nations General Comment No. 17 on the right of the child to rest, leisure, play, recreational activities, cultural life and the arts (article 31) (I. World Ed.).

