Screening of the Malaria Box against kinetoplastids: a concrete example of Open Innovation collaborative research
OUTLINE

- Introduction to DNDi vision and R&D model
- Screening of Malaria Box against kinetoplastids
- Follow up on actives
- Data sharing
- The Malaria Box experience: DNDi’s view
DNDi’s Model
DNDi: Vision & Objectives

Vision:
A collaborative, patients’ needs-driven, virtual, non-profit drug R&D organisation to develop new treatments against the most neglected communicable diseases

Objectives:
- Deliver 11 to 13 new treatments by 2018 for sleeping sickness, Chagas disease, leishmaniasis, malaria, paediatric HIV and specific helminth infections
- Establish a robust pipeline for future needs
- Use and strengthen existing capacity in disease-endemic countries
Dedicated Teams Worldwide
Over 660 People Committed to DNDi’s Vision
IP & Open Innovation Practices

- Access to compounds, know-how and knowledge
- Increase access to innovation
- Ensure equitable access to all patients & affordable treatment

⇒ Medicines Patent Pool
⇒ WIPO Re:Search
⇒ Open & equitable licensing
⇒ Open Innovation portal/CHEMBL

www.dndi.org/diseases-projects/open-innovation.html
Screening of Malaria Box against kinetoplastids

Collaboration with

- Medicines for Malaria Venture
- LMPH at University of Antwerp (DNDi)
- Swiss Tropical and Public Health Institute (DNDi)
Screening outcome

- Quick access to Malaria Box (compounds and structures)
- screened against Tryp. b. rhod., T. cruzi, L. inf. and MRC-5 cell line

HAT
- 55 hits
- 13.7% (0.45%)

Chagas
- 21 hits
- 5.2% (0.55%)

VL
- 8 hits
- 2% (0.06%)
Hit analysis and priority setting: an example

Hit triaging criteria

- cluster analysis
- duplication with DNDi
- discovery program
- drug-like properties

4 priority hit for HAT
1 priority hit for VL
Follow up on actives
Priority hits: progressing in a collaborative mode

- resupply of material
- Activity reconfirmation of priority hits
- preclinical profiling (ADMET, PK)
- Screening of analogs
- Follow-up in vitro profiling drug action assays (time-kill, reversibility)

Go/no-go decision
For in vivo efficacy assays (PoC)
HAT priority hit: data annotation for decision-making

<table>
<thead>
<tr>
<th>KS</th>
<th>Kinetic Solubility pH=7.4 (µg/mL)</th>
<th><0.37</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kinetic Solubility pH=7.4 (µM)</td>
<td><1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HMS</th>
<th>Mouse</th>
<th>t½ (min)</th>
<th>213.26</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CL (mL/min/kg)</td>
<td>38.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL_int (mL/min/kg)</td>
<td>30.5</td>
</tr>
</tbody>
</table>

| Human | t½ (min) | 79.08 |
| | CL (mL/min/kg) | 31.67 |

<table>
<thead>
<tr>
<th>MMS</th>
<th>Human</th>
<th>T½ (min)</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CL (µL/min/mg)</td>
<td>30.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CL_int (mL/min/kg)</td>
<td>30.5</td>
<td></td>
</tr>
</tbody>
</table>

Mouse	T½ (min)	100.43
	CL (µL/min/mg)	27.6
	CL_int (mL/min/kg)	109.3

<table>
<thead>
<tr>
<th>PLS</th>
<th>% Remaining after Incubation (60 min)</th>
<th>Human Plasma</th>
<th>88.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CD-1 Mouse Plasma</td>
<td>91.0</td>
</tr>
</tbody>
</table>

MPB	CD-1 Mouse Liver Microsome	Fu	0
		Fb	1.0
		% Recovery	37.4

PPB	Human Plasma	% Unbound	0.7
		% Bound	99.3
		% Recovery	89.2

CD-1 Mouse Plasma	% Unbound	0.1
	% Bound	99.9
	% Recovery	95.8

DDI	1A2	Inhibition	*IC₅₀ (µM)	11.8
	2C9	Inhibition	*IC₅₀ (µM)	94.0
	2C19	Inhibition	*IC₅₀ (µM)	>100
	2D6	Inhibition	*IC₅₀ (µM)	4.2
	3A4-M	Inhibition	*IC₅₀ (µM)	No inhibition
	3A4-T	Inhibition	*IC₅₀ (µM)	99.0

Administered dose (mg/kg) (PO)	59.13
Administered dose (µmol/kg) (PO)	161
Cmax (µmol/L)	3.57
Tmax (h)	1.66
T½	NR
Tlast (h)	9
AUC₀-last (h*µmol/L)	24.13
AUC₀-inf (h*µmol/L)	NR
MRT₀-last (h)	4.44
MRT₀-inf (h)	NR
AUC₀-inf/AUC₀-last (%)	NR

| hERG % I (11µM) | 82.69 |
| hERG % I (1µM) | 14.22 |

HAT in vitro

T. b. rhod. STIB 900
IC₅₀ 0.36 µM
IC₉₀ 1.41 µM

Plasma Concentration after PO Administration

- **M1**
- **M2**
- **M3**
- **Mean PO**

IC₉₀

Medicines for Malaria Venture
Findings

In vitro activity does not always translate to in vivo activity. The compound, not the model, is the question.

Transition from in vitro to in vivo

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC50 (µM)</th>
<th>IC90 (µM)</th>
<th>IC50 (µM)</th>
<th>IC90 (µM)</th>
<th>IC50 (µM)</th>
<th>IC90 (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMV665961 IC50</td>
<td>0.023</td>
<td>0.145</td>
<td>0.002</td>
<td>0.084</td>
<td>0.602</td>
<td>1.13</td>
</tr>
<tr>
<td>MMV665961 IC90</td>
<td>0.077</td>
<td>0.285</td>
<td>0.013</td>
<td>0.165</td>
<td>1.13</td>
<td>1.83</td>
</tr>
<tr>
<td>MMV019017 IC50</td>
<td>0.002</td>
<td>0.084</td>
<td>0.011</td>
<td>0.251</td>
<td>0.602</td>
<td>1.13</td>
</tr>
<tr>
<td>MMV019017 IC90</td>
<td>0.013</td>
<td>0.165</td>
<td>0.002</td>
<td>0.429</td>
<td>0.602</td>
<td>1.83</td>
</tr>
</tbody>
</table>

Activity of MMV019017

MMV019017 is a slow-killer.

Treatment Period

<table>
<thead>
<tr>
<th>Treatment period (days)</th>
<th>Dose (mg/kg/day)</th>
<th>Route</th>
<th>Cured / infected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td>0/4</td>
</tr>
<tr>
<td>MMV019017</td>
<td>4</td>
<td>60</td>
<td>p.o. 0/4</td>
</tr>
</tbody>
</table>

MMV019017 is not active in vivo.

DNDi

Drugs for Neglected Diseases initiative
Data sharing
Data sharing

- **Malaria box screening data set released in CHEMBL-NTD**
 https://www.ebi.ac.uk/chembl/malaria 13 Noc 2012

- **Publication of data under preparation**
 submission end of May to Journal of Biomolecular Screening (Special issue on Novel Therapeutic Approaches for Neglected Infectious Diseases)

- **Annotation data** to be made public domain by MMV in near future

Data will benefit the NTD scientific community
Malaria Box experience: the DNDi’s view
Clear gain in time and resources by working in a collaborative and open way

• Immediate access to structures (waiving negotiation)
• Direct access to compounds for screening and profiling assays
• High quality collection: QC, favourable biological properties (high hit rate)
• Timely access to key preclinical data for decision-making purpose
 readily available or generated on ad hoc basis

• Fast data sharing among project partners … and beyond
• Facilitate Identification of synergies
• Data generated beneficial to other development projects
• New data can “resuscitate”/encourage work on discarded/low priority active
• Keep away from duplication

Welcome to the Pathogen Box!
THANK YOU

www.dndi.org
DNDi:
Patient Needs-Driven & Innovative R&D Model

- Deliver **11 to 13 new treatments by 2018**
- Establish a **robust pipeline**
- Use and strengthen existing **capacity in disease-endemic countries**
- **Raise awareness** and advocate for increased **public leadership**

Founding Partners

- Indian Council for Medical Research (ICMR)
- Kenya Medical Research Institute (KEMRI)
- Malaysian MOH
- Oswaldo Cruz Foundation, Brazil
- Médecins Sans Frontières (MSF)
- Institut Pasteur France
- TDR (permanent observer)

- **Geneva Headquarters**
- **USA**
- **DRC**
- **India**
- **Japan**
- **Malaysia**
- **Brazil**
- **Kenya**

- **7 worldwide offices**
10-Year Results

- 2 new malaria treatments
- 1 new sleeping sickness combination
- 1 new visceral leishmaniasis combination for Africa
- 1 set of VL treatment modalities for Asia
- 1 Chagas paediatric dosage form
- Largest pipeline ever for the kinetoplastid diseases
- Clinical research platforms in Africa
- €277M of €400M needed raised
- On track to deliver new treatments per business plan
6 New Treatments Developed Since 2007

☑ Easy to Use ☑ Affordable ☑ Field-Adapted ☑ Non-Patented
DNDi Portfolio: A Mix of Existing Drugs & NCEs

6 new treatments available and 12 new chemical entities in the pipeline

<table>
<thead>
<tr>
<th>Research</th>
<th>Translation</th>
<th>Development</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen</td>
<td>Pre-clinical</td>
<td>Phase I</td>
<td>Registration</td>
</tr>
<tr>
<td>Hit to Lead</td>
<td></td>
<td>Phase Ila/PoC</td>
<td></td>
</tr>
<tr>
<td>Lead Opt.</td>
<td></td>
<td>Phase IIb/III</td>
<td>Access</td>
</tr>
</tbody>
</table>

HAT
- **SCYX2035811**
- **SCYX1608210**
- **Fexinidazole**

- **NECT**
 - Nifurtimox-Eflornithine Combination Therapy

Leishmaniasis
- **Nitroimidazole**
- **Oxaleish**
- **VL-2098**
- **Fexinidazole**
- **Anfoleish (CL)**

- **SSG&PM**
 - Sodium Stibogluconate & Paromomycin Combination Therapy for VL in Africa

- **New VL Treatments for Bangladesh**
- **New VL Treatments for Latin America**
- **Generic Ambisome**

Chagas
- **Nitroimidazole**
- **Oxachagas**
- **Biomarkers**
- **Fexinidazole**
- **New Benz Regimens**
- **New Combos**

- **Benznidazole**
 - Paediatric Dosage Form

Filaria
- **Emodepside**

Paediatric HIV
- **Two ‘4-in-1’ LPV/r-based Fixed-Dose Combinations**
- **RTV Superbooster for HIV/TB co-infection**

Malaria
- **ASAQ FDC**
 - Artesunate-Amodiaquine Fixed-Dose Combination
- **ASMQ FDC**
 - Artesunate-Mefloquine Fixed-Dose Combination

★ New Chemical Entity (NCE); Fexinidazole (for HAT, VL and Chagas Disease) = 1 NCE

Jan. 2014
Risks in R&D of Pharmaceutical Drugs