Next-generation sequencing for drug-resistant TB
Madagascar experience with MinION

Simon Grandjean Lapierre MD MSc FRCPC
Assistant professor
Microbiology, infectiology and immunology department
Université de Montréal hospital and research center

Visiting researcher
Institut Pasteur de Madagascar
Plan

1. TB in Madagascar
2. Drug resistance surveillance and previous insights on transmission
3. DNA-Sequencing implementation process, platform structure and workflow
4. Sample results
5. Early case examples of DNA-Sequencing public health information
6. Challenges to come
Plan

1. TB in Madagascar
2. Drug resistance surveillance and previous insights on transmission
3. DNA-Sequencing implementation process, platform structure and workflow
4. Sample results
5. Early case examples of DNA-Sequencing guided public health information
6. Challenges to come
TB in Madagascar

<table>
<thead>
<tr>
<th>Estimates of TB burden*, 2017</th>
<th>Number (thousands)</th>
<th>Rate (per 100 000 population)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality (excludes HIV+TB)</td>
<td>13 (7.8–20)</td>
<td>52 (31–79)</td>
</tr>
<tr>
<td>Mortality (HIV+TB only)</td>
<td>0.65 (0.29–1.2)</td>
<td>2.6 (1.1–4.5)</td>
</tr>
<tr>
<td>Incidence (includes HIV+TB)</td>
<td>61 (39–87)</td>
<td>238 (154–340)</td>
</tr>
<tr>
<td>Incidence (HIV+TB only)</td>
<td>1.5 (0.69–2.7)</td>
<td>6 (2.7–11)</td>
</tr>
<tr>
<td>Incidence (MDR/RR-TB)**</td>
<td>0.44 (0.087–1.1)</td>
<td>1.7 (0.34–4.2)</td>
</tr>
</tbody>
</table>

Incidence and Funding Trends

Incidence Trend (2000–2016)

- **Incidence**
- **Notified (new and relapse)**
- **Incidence (HIV+TB only)**

Funding by Source (US$ millions, 2006–2018)

- **Grants (excluding Global Fund)**
- **Global Fund**
- **Domestic**

Sources

- WHO – Madagascar tuberculosis country profile (2018)
- Ministry of Health of Madagascar, Programme national de lute à la tuberculose (2018)
Plan

1. TB in Madagascar
2. Drug resistance surveillance and previous insights on transmission
3. DNA-Sequencing implementation process, platform structure and workflow
4. Sample results
5. Early case examples of DNA-Sequencing guided public health information
6. Challenges to come
Drug resistance surveillance

Grandjean Lapierre S., Knoblauch A. et al. [Unpublished – copyrights Institut Pasteur de Madagascar]
Insights on transmission

![Maps illustrating spatial clustering of TB cases and potential transmission areas.](image)

Fig. 4 Spatial signatures of TB identified by the Kulldorff spatial scan method.

- **A**: Spatial clustering of TB cases and patients with genotypic clustered isolate.
- **B**: Distribution of isolates families in each spatial clustering of patients with genotypic clustered isolates.

Plan

1. TB in Madagascar
2. Drug resistance surveillance and previous insights on transmission
3. DNA-Sequencing implementation process, platform structure and workflow
4. Sample results
5. Early case examples of DNA-Sequencing guided public health information
6. Challenges to come
Implementation process

Illumina & nanopore sequencing of MDR and controls

- September 2017
- February 2018
- March 2018
- April 2018
- May 2018
- September 2018
- March 2019

- Retrospective Sample selection
- Research assistant onboarding
- Training & summit

Prospective nanopore sequencing
Platform structure and workflow

1. Review of the current methods available for the sequencing of *Mycobacterium tuberculosis* complex

1.0 Introduction .. 1
1.1 Whole genome sequencing versus targeted next-generation sequencing 1
1.2 The next-generation sequencing workflow ... 2
 1.2.1 DNA extraction and quality control ... 3
 1.2.2 DNA library preparation ... 4
 1.2.3 Next-generation sequencing: Platforms and considerations 5
 1.2.4 Next-generation sequencing data analysis ... 10
1.3 References ... 11
WHO – FIND, The use of next-generation sequencing technologies for the detection of mutations associated with drug resistance in Mycobacterium tuberculosis complex: technical guide, 2018
Platform structure and workflow

Figure 7
The Madagascar project TB sequencing and analysis workflow.

Institut Pasteur de Madagascar
Hosts Madagascar’s NTP reference laboratory
Mycobacteria Unit – “Level 3” laboratory

Pre-PCR dedicated space
Sequencing lab dedicated space
Biosafety level 3 culture capacity

One full time equivalent post-doctoral researcher
Three part time laboratory technicians

“Level 3” laboratory
Platform structure

“Level 2” laboratory

“Level 1” laboratory
Plan

1. TB in Madagascar
2. Drug resistance surveillance and previous insights on transmission
3. DNA-Sequencing implementation process, platform structure and workflow
4. Sample results
5. Early case examples of DNA-Sequencing guided public health information
6. Challenges to come
Sample results

- Madagascar TB DNA-Sequencing program
 - Over 100 retrospective isolates
 - Over 50 prospective isolates
 - Turn around times of 3-4 working days post culture
 - All MDR/RR isolates in the country
 - All phenotype – GeneXpert – HAIN discordant isolates in MDR-TB high risk patients
 - Other research oriented projects
Sample results

The EPI2ME *M. tuberculosis* AMR pipeline on the EPI2ME platform provides real-time identification of first-second-line drug resistance of TB samples.
Sample results

Quality Control
1. *Porechop* was run to trim adapter sequences from reads and discard reads with adapters found in the middle. More detailed information can be found in *porechop.log*. For quality control plots of the reads after this step, see *plot.prs*.
2. Reads were aligned to the TB reference NC_000962.3 using *Minimap2*.
3. All reads which did not map to NC_000962.3.3a were removed. Prior to filtering, there were 345130 reads. After filtering there remained 20392. This means 98.68% of reads mapped to NC_000962.3.3a. For more stats on the pre-filtered reads see *stats.pre* and for post-filtered reads see *stats.post*. For quality control plots of the reads after this step (and read percent identity to NC_000962.3.3a) see *plot.post*. Stats were produced with *bamtools* and plots with *Pleido*.

Mykrobe Analysis
A summary of the susceptibility information from *Mykrobe* is shown here. For the full report, see *mykrobe*. If resistance is identified for a drug then the predicted resistant variant(s) is/are given, along with supporting information.

- Rifampicin
 Prediction: Resistant
 Called by rmpA, rmpA2, rmpA3
 Reference median depth: 0
 Alternate median depth: 2

- Amikacin
 Prediction: Susceptible

- Streptomycin
 Prediction: Susceptible

- Ethambutol
 Prediction: Susceptible

- Pyrazinamide
 Prediction: Resistant
 Called by pzaA, pzaA2, pzaA3
 Reference median depth: 0
 Alternate median depth: 2

- Kanamycin
 Prediction: Susceptible

- Gatifloxacin
 Prediction: Susceptible

- Quinolones
 Prediction: Susceptible

- Isoniazid
 Prediction: Resistant
 Called by rpsD_3917, rpsD_0317
 Reference median depth: 0
 Alternate median depth: 2

mykrobe
 BC03_predictARN
 plot.post
 BC03_post_filering.pdf
 plot.prs
 BC03_post_filering.pdf
 porechop_log
 porechop.log
 stats.post
 BC03_post_filering.bt
 stats.prs
 BC03_post_filering.txt

Author: Michael Hall | michael.hall@bels.ac.uk | 2019-04-18
Plan

1. TB in Madagascar
2. Drug resistance surveillance and previous insights on transmission
3. DNA-Sequencing implementation process, platform structure and workflow
4. Sample results
5. Early case examples of DNA-Sequencing public health information
6. Challenges to come
Public health information

• **Is there MDR person to person transmission in Madagascar?**
 Rare geospatial and molecular clustering of confirmed MDR-TB cases (2012-2017)

![Map and tree diagram showing clustering of MDR-TB cases](image)

• **How should we re-design Madagascar’s drug resistance surveillance laboratory testing algorithm?**
 National resistome-guided review of analytical performance of rapid molecular assays like GeneXpert and HAIN

Grandjean Lapierre S., Knoblauch A. et al. [Unpublished – copyrights Institut Pasteur de Madagascar]
Individual patient information

- Investigation of atypical phenotypic DST profiles
 Recognition of Non Tuberculosis Mycobacteria
 Suspicion of mixed infections

- WGS is not yet used for systematic prospective DST
Early successes

- Early integration with NTP
- Locally recruited and trained human resources
- International partnership and mentoring
- Systematic data sharing in CRyPTIC database
- Research & routine diagnostics shared platform
Challenges to come

- Training & advocacy for clinicians and NTP managers
- Integration of diagnostics with therapeutic guidelines
- Improvement of turn around times
- Delocalization towards “level 2” and “level 1” laboratories
- Strengthening of the procurement system and general business case for NGS in LMICs
- Sustained funding
Thanks to a team of teams