Long-acting injectables for TB prevention in people living with HIV: prospects and challenges

Nicole C. Ammerman, Eric Nuermberger
The Center for Tuberculosis Research
Johns Hopkins University School of Medicine
Baltimore, Maryland, USA

Monday, 04 March 2019
Tuberculosis (TB) in people living with HIV (PLWH)

- Among the estimated 37 million PLWH, the risk of developing active TB is 20 (range 17-23) times higher than among people without HIV.
- TB is the leading cause of hospital admission and mortality among PLWH.
- Among people with latent TB infection (LTBI), HIV-co-infection is the highest risk factor for disease progression.
- TB preventive therapy is effective, including in PLWH.

UNAIDS. Global AIDS Update 2018.
TB preventive therapy

WHO-recommended regimens for TB preventive therapy
1) 6-9 months of daily isoniazid (isoniazid preventive therapy, IPT)
2) 3 months of weekly high-dose isoniazid plus rifapentine
3) 3-4 months of daily isoniazid plus rifampin
4) 3-4 months of daily rifampin

Newly evaluated regimen
1 month of daily isoniazid plus rifapentine
(Swindells et al. 2018)

Compared to IPT, the shorter regimens have non-inferior efficacy but have higher completion rates.

Special considerations in PLWH
- At least 36 months of IPT, if living in a high-burden setting
- Rifampin and rifapentine: drug-drug interactions with antiretrovirals (ARVs)

Long-acting injectable (LAI) drug formulations

LAI formulations can improve adherence to long-term and perpetual drug administration.
 o Hormone therapy
 o Schizophrenia

For HIV therapy and PreP:
 o Cabotegravir and rilpivirine phase 3 randomized clinical trial, NCT02951052
 o High level of user interest and acceptance

Additional potential benefits of LAI formulations:
 o Mitigate drug-drug interactions
 o Reduce toxicity
 o Overcome oral bioavailability problems
 o Reduce pharmacokinetic variability
 o Ease administration to children

For TB preventive therapy:
 o Completion of treatment for LTBI may be improved with LAI formulations.
 o If infrequent enough, an LAI could be useful for continuous TB preventive therapy for PLWH in settings with high TB burden.

LAI formulations for TB preventive therapy: Target product profile

Prepared by the Working Group on Long-Acting/Extended Release Formulations for the Prevention and Treatment of TB (LEAP-TB)

<table>
<thead>
<tr>
<th></th>
<th>Minimal regimen</th>
<th>Ideal regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of compounds</td>
<td>Monotherapy</td>
<td>Monotherapy</td>
</tr>
<tr>
<td>Indication</td>
<td>Presumed DS-TB exposure</td>
<td>Any TB exposure</td>
</tr>
<tr>
<td>Target populations</td>
<td>Adults and other age groups with approval, irrespective of HIV status</td>
<td>All age groups, irrespective of HIV status</td>
</tr>
<tr>
<td>Product presentation</td>
<td>Injections, or implant</td>
<td>Single injection, or implant</td>
</tr>
<tr>
<td>Dosage form/schedule</td>
<td>Weekly or less frequently</td>
<td>Monthly or less frequently</td>
</tr>
<tr>
<td>Efficacy</td>
<td>Non-inferior to SOC</td>
<td>Superior to SOC</td>
</tr>
<tr>
<td>Contraindications, precautions, interactions</td>
<td>No additional monitoring required; drug-drug interactions no worse than SOC</td>
<td>No contraindications or warnings; no significant drug-drug interactions</td>
</tr>
<tr>
<td>Shelf-life/storage</td>
<td>2 years at 4°C</td>
<td>3 years at 40°C and 75% humidity</td>
</tr>
<tr>
<td>Cost</td>
<td>No greater than SOC</td>
<td>Less than SOC</td>
</tr>
</tbody>
</table>

DS: drug-susceptible
DST: drug susceptibility testing
IM: intramuscular
IV: intravenous
SC: subcutaneous
SOC: standard-of-care

Potential drawbacks of LAI formulations:

- **Cost.** Proprietary LAI formulations will not be available for generic manufacturing.

- **Safety.** Drug safety will need to be understood before testing as an LAI formulation.

- **Resistance.** Prolonged sub-inhibitory drug concentrations could select resistant organisms **IF** an individual actually has active TB.
 - Theoretical
 - Prolonged sub-inhibitory concentrations should not pose greater risk – and may actually pose less risk – than higher concentrations produced by oral drug treatment, which could cause greater selective pressure.
Key physiochemical and PK/PD characteristics informing choice of agents for LAI formulations

- Water solubility
 - Compatibility with strategy
 - Range of existing LAI agents
- Surrogate for rate of clearance
 - Derived from oral C_{min} values
- PK half-life (oral)
- Target concentration

Figure courtesy of Andrew Owen, University of Liverpool
Compatibility of existing TB drugs for LAI formulations

Isoniazid

Rifampin

Pyrazinamide

Ethambutol

Water solubility

PK half-life

Target concentration

Figures courtesy of Andrew Owen, University of Liverpool
Compatibility of newer TB drugs for LAI formulations

- Rifabutin
- Rifapentine
- Delamanid
- Bedaquiline

Water solubility
PK half-life
Target concentration

Figures courtesy of Andrew Owen, University of Liverpool
Preclinical testing: example bedaquiline

Physiologically-based pharmacokinetic (PBPK) models are compartmental PK models in which basic biological knowledge is considered; the compartments are real anatomical spaces.

- Information on organs (interconnectivity, composition, volume, blood flow perfusions)
- Absorption, distribution, metabolism, and elimination
- Allometric data

![Plasma [bedaquiline] following a single, 2000 mg intramuscular injection (Rajoli et al. 2018)](image)

PK prediction of a single intramuscular injection at release rate of 0.0015 h⁻¹. (Rajoli et al. 2018)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose (mg)</th>
<th>(C_{\text{max}}) mg/l</th>
<th>(C_{\text{trough}}) mg/l</th>
<th>AUC mg × h/l</th>
<th>Target concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedaquiline</td>
<td>2000</td>
<td>0.39 ± 0.08</td>
<td>0.16 ± 0.03</td>
<td>177 ± 36</td>
<td>1.6 (ECOFF)³²</td>
</tr>
<tr>
<td>Delamanid</td>
<td>1500</td>
<td>0.11 ± 0.03</td>
<td>0.044 ± 0.011</td>
<td>50 ± 12</td>
<td>0.04 (ECOFF)²⁵</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>2000</td>
<td>0.39 ± 0.13</td>
<td>0.15 ± 0.05</td>
<td>170 ± 56</td>
<td>0.125 (CC)³³</td>
</tr>
<tr>
<td>Rifapentine</td>
<td>250</td>
<td>0.50 ± 0.06</td>
<td>0.21 ± 0.02</td>
<td>232 ± 21</td>
<td>0.18 (MIC*3)³⁴</td>
</tr>
</tbody>
</table>

PBPK = physiologically based pharmacokinetic; \(C_{\text{max}}\) = maximum plasma concentration; \(C_{\text{trough}}\) = trough plasma concentration 24 h after administration; AUC = area under the concentration-time curve; ECOFF = epidemiological cut-off, CC = critical concentration, MIC = minimum inhibitory concentration.

Janssen developed an aqueous bedaquiline microsuspension for LAI use.

Plasma bedaquiline and M2 metabolite concentrations after intramuscular injection of long-acting bedaquiline formulation at 160 mg/kg in male Swiss mice

Preclinical testing: example bedaquiline PK of LAI formulation in mice

Based on PK modeling, a 1 g single intramuscular injection of B\textsubscript{LAI} in humans is predicted to maintain plasma bedaquiline concentrations > 0.1 µg/mL for > 1 month. (Vermeulen et al. 2018)

Figure adapted from Kaushik et al. Antimicrob Agents Chemother 2019; pii: AAC.00007-19.
Preclinical testing: example bedaquiline

In vivo activity in a mouse model of LTBI

Model: Generate a stable, low-level *M. tuberculosis* lung infection in BALB/c mice
- Immunize by aerosol infection with *M. bovis* rBCG30
- 6 weeks later, challenge by aerosol infection with *M. tuberculosis* H37Rv
- ≥6 week later, start treatment

Lung bacterial counts after 1 month of treatment

Duration of treatment to prevent 50% relapse

- **R**, rifampin; **P**, rifapentine; **H**, isoniazid; **B**, bedaquiline

Adapted from Zhang *et al.* AJRCCM 2011;184:732.
Our objective was to evaluate the in vivo activity of the bedaquiline LAI in a mouse model of LTBI treatment.

<table>
<thead>
<tr>
<th>Control regimens</th>
<th>Untreated</th>
<th>Negative control</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{10}</td>
<td>Positive control; oral rifampin 10 mg/kg, 5 days/week</td>
<td></td>
</tr>
<tr>
<td>H_{50}P_{15}</td>
<td>Positive control; oral rifapentine 15 mg/kg and isoniazid 50 mg/kg, 1 day/week</td>
<td></td>
</tr>
<tr>
<td>B_{25}</td>
<td>Positive control; oral bedaquiline 25 mg/kg, 5 days/week</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test regimens</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{2.67}</td>
<td>Oral bedaquiline 2.67 mg/kg, 5 days/week = 160 mg/kg in 12 weeks</td>
<td></td>
</tr>
<tr>
<td>B_{5.33}</td>
<td>Oral bedaquiline 5.33 mg/kg, 5 days/week = 320 mg/kg in 12 weeks</td>
<td></td>
</tr>
<tr>
<td>B_{8}</td>
<td>Oral bedaquiline 8 mg/kg, 5 days/week = 480 mg/kg in 12 weeks</td>
<td></td>
</tr>
<tr>
<td>B_{LAI-160 \times 1}</td>
<td>LAI bedaquiline 160 mg/kg, 1 intramuscular injection = 160 mg/kg in 12 weeks</td>
<td></td>
</tr>
<tr>
<td>B_{LAI-160 \times 2}</td>
<td>LAI bedaquiline 160 mg/kg, 2 intramuscular injections, 4 weeks apart = 320 mg/kg in 12 weeks</td>
<td></td>
</tr>
<tr>
<td>B_{LAI-160 \times 3}</td>
<td>LAI bedaquiline 160 mg/kg, 3 intramuscular injections, 4 weeks apart = 480 mg/kg in 12 weeks</td>
<td></td>
</tr>
</tbody>
</table>

R, rifampin; P, rifapentine; H, isoniazid; B, bedaquiline
Bedaquiline LAI in a mouse model of LTBI

Results: control regimens

R, rifampin; P, rifapentine; H, isoniazid; B, bedaquiline

Figure adapted from Kaushik et al. *Antimicrob Agents Chemother* 2019; pii: AAC.00007-19.
Results: daily bedaquiline regimens

Figure adapted from Kaushik et al. Antimicrob Agents Chemother 2019; pii: AAC.00007-19.
Results: LAI bedaquiline regimens

Figure adapted from Kaushik et al. *Antimicrob Agents Chemother* 2019; pii: AAC.00007-19.
Bedaquiline LAI in a mouse model of LTBI

Results: daily versus LAI bedaquiline regimens

Total bedaquiline dose: 160 mg/kg

Total bedaquiline dose: 320 mg/kg

Total bedaquiline dose: 480 mg/kg

Figure adapted from Kaushik et al. Antimicrob Agents Chemother 2019; pii: AAC.00007-19.
Preclinical testing: Bedaquiline LAI in a mouse model of LTBI

In this mouse model of LTBI treatment:

• Over 12 weeks, once-monthly dosing with $B_{LAI-160}$ demonstrated superior or equivalent activity to daily oral administration of rifampin or the same total bedaquiline dose.

• A single dose of $B_{LAI-160}$ demonstrated bactericidal activity for up to 12 weeks post-administration.

• Bactericidal activity was observed at plasma concentrations above the MIC (7H11) for *M. tuberculosis*.
Conclusions

- LAI formulations could significantly, positively impact the implementation of TB preventive therapy, including continuous therapy in PLWH.

- Bedaquiline LAI formulation has promise for TB preventive therapy.

- The paucibacillary mouse model of LTBI is a validated model for testing regimens that
 - can provide key PK/PD data, including estimation of treatment duration;
 - cannot precisely predict the magnitude of drug-drug interactions (e.g., ARVs).

- Development and optimization of LAI therapies will be an iterative process involving PK/PD modeling, formulation development, in vivo testing, and clinical PK studies, in addition to safety/tolerability assessments, prior to clinical efficacy trials.
Acknowledgements

Johns Hopkins University School of Medicine Center for Tuberculosis Research
- Amit Kaushik
- Vikram Saini
- Eric Nuermberger

Janssen Infectious Diseases
- Iwan Vervoort
- Sophie Lachau-Durand
- An Vermeulen
- Koen Andries

LEAP-TB
- Susan Swindells
- Andrew Owen
- Charles Flexner (PI)

Funding for the LAI bedaquiline project was provided by Janssen.