Recent Advances in TB Vaccine Clinical Research: prospects and challenges

Ann M. Ginsberg, MD, PhD | 4 March 2019
WHO-CROI HIV/TB Research Meeting
Seattle, WA
TB Is #1 Infectious Killer - 10M new cases in 2017

Deaths in 2017

- TUBERCULOSIS: 1.6M
- HIV/AIDS: 940K
- Co-infection: 300K

Source: WHO Global TB Report 2018
2018 – A Year of Unprecedented Progress

➢ Now is the time to accelerate TB vaccine development
H4:IC31 and BCG revaccination
Phase II Prevention of Infection Trial

Clinical Trial Sites:
SATVI and DTHF/Emavundleni
Prevention of Infection as an Early POC Trial for Go/NoGo Decision-making

Reduce sample size by:

- Selecting high risk study population: IGRA (-) adolescents/adults at high risk of infection
 - ~8x the risk of TB disease in the same population
- Reducing statistical power of the study
 - As this is POC, consider power less than 90%. A reasonably powered study could have power >70%.
 - Increased risk that you will fail to find a significant result, even if one does exist (i.e., false negative)
- Increasing alpha: Type 1 error rate of 10% (1-sided)
 - Increases chance of having a statistically significant result when one does not exist (i.e., false positive)
 - Less likely to ‘miss’ a true signal

CAVEAT: Prevention of infection might only occur in the 90% of persons infected with *M.tb* who will never develop TB disease anyway.
Proof of Concept:
Phase 2 Prevention of Infection study to evaluate safety, efficacy and immunogenicity

3 Study Arms:
- H4:IC31 (IM, 2 doses, 56 days apart)
- BCG revaccination (ID, 1 dose; SSI BCG)
- Placebo (saline; IM, 2 doses, 56 days apart)

Population:
- QFT*-negative adolescents (12–17 yrs)
- Western Cape, South Africa (SATVI/EMA)
- High risk of infection (~10% per year)
 - Defined as QFT conversion from + to -

Design:
- Randomized (1:1:1)
- Placebo-controlled
- Partially blinded

Study Size:
N=990 (330/arm)

*QFT = QuantiFERON Gold In-Tube interferon gamma release assay
POI Trial Results and Conclusions

• Both H4:IC31® and BCG revaccination appeared safe and immunogenic
 ➢ Population: healthy, M.tb-uninfected, high risk of TB adolescents in Western Cape
• Neither vaccine showed statistical significance in preventing initial infection (initial QFT conversion)
• BCG revaccination: statistically significant prevention of sustained QFT conversion (increased clearance or control of infection; VE: 45.4%; p=0.01)
• H4:IC31: not statistically significant prevention of sustained QFT conversion at 95% confidence level (VE: 30.5%; p=0.08)
• Biobank created and analysis plan being developed for discovery of candidate correlates of risk and/or protection
First POI Trial: Conclusions and Next Steps (H4:IC31 and BCG revaccination in high risk adolescents)

BCG Revaccination
- Statistically significant prevention of sustained infection
- Confirm then/and evaluate in Prevention of TB Disease trial
- Potential correlates of protection discovery

H4:IC31
- First signal of any protection against TB infection or disease in humans by a subunit vaccine
- Suggests benefit of studying other subunit vaccines
- Not being further developed

POI Trial Design
- Is feasible and may be useful tool for decision-making.
- Should be validated in a Prevention of Disease trial
M72/AS01E Phase IIb Prevention of Disease Trial

Results of the primary analysis
M72/AS01\textsubscript{E} candidate vaccine (M72)

To induce a robust Th1 CD4+ T cell response against Mtb antigens

Antigens selection

[Skeiky, 1999; Dillon, 1999; Al-Attiyah 2004]

- Lymphoproliferation - IFN-γ production
 - + Healthy PPD +
 - + TB patients
 - × PPD -
- No IL-10 production in TB patients

Mtb antigens
PepA (Mtb32A) and PPE18 (Mtb39A)

Adjuvant system
AS01\textsubscript{E}

*S: QS-21: Quillaja saponaria Molina, fraction 21; Licensed by GSK from Antigenics LLC, a wholly owned subsidiary of Agenus Inc., a Delaware, USA corporation.

*QS-21: Quillaja saponaria Molina, fraction 21; Licensed by GSK from Antigenics LLC, a wholly owned subsidiary of Agenus Inc., a Delaware, USA corporation.
Clinical Phase I/II experience

Safety and immunogenicity assessed in a broad range of populations

MTB-001: Ph 1 FTIH
Adults PPD-USA(1)

TB-002: Ph I
Adults PPD-Belgium(2)

TB-004: Ph I/II
Adults PPD+ Switzerland(3)

TB-005/008: Ph I/II
Adults PPD-Belgium (4)

TB-009: Ph II
Adults PPD+ Philippines (5)

TB-010: Ph II
Adults PPD +/- South Africa (6)

TB-011: Ph I/II
Adults HIV+/ART+ Switzerland (7)

TB-012: Ph II
Adolescents South Africa (8)

TB-013: Ph II
Infants (±EPI) The Gambia(9)

TB-014: Ph II
Adults HIV+/- ±ART India(10)

TB-015: Ph I
Adults PPD-
Belgium (11)

TB-017: Ph II
Adults with TB disease
Taiwan & Estonia (12)

M72/AS01\textsubscript{E} candidate vaccine

Goal: induce a robust Th1 CD4+ T cell response against Mtb antigens

Clinical safety and immunological profiles to date

- Generally well tolerated although higher reactogenicity observed in patients with active tuberculosis
- High seroconversion rate & long lasting humoral response
- Poly-functional CD4 Th1 cells (IFN\textsubscript{\gamma}, TNF\textsubscript{α}, IL-2+)
 - 3 years persistence*
- CD8 Th1 cells
- IL-17-expressing CD4 T cells
- T cell responses in lung

Phase IIb Study design

- **Subjects**
 - HIV negative healthy adults (18 - 50 years)
 - Negative sputum by PCR (Xpert MTB/RIF)
 - Mtb-infected: positive by QuantiFERON

- **Design**
 - Double-blind, randomized (1:1)
 - M72/AS01_E or Placebo
 - 2 doses 1 month apart

- **TB cases determination by**
 - Active follow-up every 2 months either by calls, home visits or SMS
 - TB symptoms and bacteriological confirmation
 - By PCR and/or MGIT culture

- **3 years follow up**
 - Primary analysis at year 2
 - LSLV November 2018
Study participants

- Screened: n=8,336
- Enrolled: n=3,575
- Total Vaccinated: n=3,573
- Not Vaccinated: n=2
- ATP Efficacy: n=3,283
- Not ATP Efficacy: n=290

Trial sites:
- KEMRI
- CIDRZ
- Zambart
- SATVI
- TASK
- CIDRI
- Aurum Inst.
- Tembisa
- Klerksdorp
- BePart
- Setshaba
- PHRU

Figure adapted from Van Der Meeren et al, presented at IDWeek, October 2018, San Francisco CA, Abstract 70677
http://www.idweek.org
Van Der Meeren et al., NEJM, 2018
Vaccine efficacy for all case definitions (ATP)

Sputum sampling and HIV status

<table>
<thead>
<tr>
<th>Sputum sampling</th>
<th>Site</th>
<th>HIV status</th>
<th>Sputum positivity by PCR/culture</th>
<th>TB disease cases</th>
<th>Vaccine efficacy against TB disease (90% CI) unadjusted Cox regression model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total M72 Placebo</td>
<td>p-value</td>
</tr>
<tr>
<td>1 Before treatment onset</td>
<td>P</td>
<td>-</td>
<td>At least 1</td>
<td>32 10 22</td>
<td>54 0.042</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>-</td>
<td>At least 2</td>
<td>22 5 17</td>
<td>70 0.017</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>-</td>
<td>At least 1 PCR</td>
<td>24 7 17</td>
<td>58 0.051</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>-/+</td>
<td>At least 1</td>
<td>41 16 25</td>
<td>35 0.174</td>
</tr>
<tr>
<td>5</td>
<td>Any</td>
<td>-/+</td>
<td>Any *</td>
<td>44 17 27</td>
<td>36 0.144</td>
</tr>
<tr>
<td>6</td>
<td>Any</td>
<td>-</td>
<td>Any*</td>
<td>44 17 27</td>
<td>29 0.225</td>
</tr>
</tbody>
</table>

Van Der Meeren at al., NEJM, September 25, 2018

P: Pulmonary – PCR by Xpert MTB/RIF™ - * Clinician has diagnosed TB and subject was treated
Study participants

- Screened: n=8,336
 - Enrolled: n=3,575
 - Total Vaccinated: n=3,573
 - ATP Efficacy: n=3,283
 - Not ATP Efficacy: n=290
 - Screening failure: n=4,761
 - Not vaccinated: n=2

Trial sites:
- KEMRI
- CIDRZ
- Zambart
- SATVI
- TASK
- CIDRI
- Aurum Inst.
- Tembisa
- Klerksdorp
- BePart
- Setshaba
- PHRU

Figure adapted from Van Der Meeren et al, presented at IDWeek, October 2018, San Francisco CA, Abstract 70677

http://www.idweek.org

Van Der Meeren et al., NEJM, 2018

ATP: According To Protocol
Kaplan-Meier (ATP cohort for efficacy)

<table>
<thead>
<tr>
<th>Time</th>
<th>VE (case definition 1, ATP)</th>
<th>%</th>
<th>LL 90%CI</th>
<th>UL 90%CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period1 (≤ 1.12 years)</td>
<td>39.0</td>
<td>-42.5</td>
<td>73.9</td>
<td></td>
</tr>
<tr>
<td>Period2 (> 1.12 years)</td>
<td>66.5</td>
<td>13.3</td>
<td>87.0</td>
<td></td>
</tr>
</tbody>
</table>

Differential vaccine effect by time?

- Incipient TB not excluded at baseline?
- Repeated exposure boosts VE?

Figure adapted from Van Der Meeren et al, presented at IDWeek, October 2018, San Francisco CA, Abstract 70677

http://www.idweek.org

Van Der Meeren et al., NEJM, 2018
Higher vaccine efficacy in ≤ 25 year olds?

Pre-specified sub-group analyses by age

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Group</th>
<th>N</th>
<th>n</th>
<th>T (year)</th>
<th>Person-year rate</th>
<th>VE (case definition 1, ATP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Person-year rate</td>
<td>VE (case definition 1, ATP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤25 years</td>
<td>M72AS01e</td>
<td>705</td>
<td>2</td>
<td>1599.77</td>
<td>0.1</td>
<td>84.4</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>724</td>
<td>13</td>
<td>1616.66</td>
<td>0.8</td>
<td>45.7</td>
</tr>
<tr>
<td>>25 years</td>
<td>M72AS01e</td>
<td>918</td>
<td>8</td>
<td>2107.25</td>
<td>0.4</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>936</td>
<td>9</td>
<td>2130.77</td>
<td>0.4</td>
<td>-99.6</td>
</tr>
</tbody>
</table>

Does repeated exposure boost VE? Is more recent infection better controlled by vaccine?

Unadjusted Cox model at different levels of baseline covariates (ATP cohort for efficacy)
Ancillary biobank study

- Samples obtained from 99% of the M72 clinical POC trial participants
- Discovery of candidate correlates of risk and protection

<table>
<thead>
<tr>
<th></th>
<th>Day 0</th>
<th>Day 37</th>
<th>Month 6</th>
<th>Month 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBMC/plasma</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Whole Blood cell count</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Intracellular RNA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

NCT02097095
Conclusions and next steps

- M72/AS01E prevented TB disease in Mtb-infected adults
 - Efficacy of 54% [CI90% 14-75%, p=0.04] - primary endpoint met
 - Secondary endpoint met (VE of 58%; p=0.05)
 - Acceptable safety profile
- More research is warranted
 - End of study analysis
 - IAVI Biobank – correlates discovery
- Next steps under discussion with stakeholders and funders
Proof of Concept Study Acknowledgments

Study participants and their communities

Investigators and their teams

Mark Hatherill
Robert J. Wilkinson
Monde Muyoyeta
Nduba Videlis
Elana Van Brakel
Andreas Diacon
Mookho Malahleha
Elizabeth Hellström
Neil Martinson
German Henostroza
Helen Ayles
Friedrich Thienemann
Michele Tameris
Thomas Scriba
James C. Innes

Funders: Aeras (BMGF, DFID DGIS, AusAID); GSK

AERAS*
Dereck Tait
Maria Lempicki
Maureen Lambrick
Kristin Croucher
Marisa Russell
Nathalie Cadieux
Kathryn Rutkowski
Cadwill Pillay
Gretta Blanter
Sharon Sutton
Ann Ginsberg
Anja Van der Westhuizen
Jennie Willson
Sebastian Gelderbloem
Tom Evans
Jacqui Shea

DMC Members
IQVIA (ex-Quintiles)

GSK
Jacqueline Akite
Aisha Khatoon
François Roman
Paul Gillard
Christina Caporaso
Evi De Ruymaeker
Emelia Ferreira
Florence Richard
Anne-Sophie Perreaux
Tina Singh
Paola Pirrotta
Pramod Dhoke
Sagar Salvi
Naresh Patil
Neela Kumar
Roland Vaudry
Philippe Moris
Gerald Voss
Marie-Ange Demoitié
Anne Bollaerts
Muriel Debois
Helen Jacob
Sophie Caterina
Mohamed Amakrane
Lieven Declerck
Marc Lievens
Hildegard Lemaire
Stéphanie Ravault
Bruno Salaun
Nathalie Baudson
Thierry Pascal
Erik Jongert
Olivier Van Der Meeren
Denis Sohy
Stéphanie Delval
Ioana Cristina Ilea
William Zonta

* Aeras TB vaccine clinical program was recently transferred to IAVI
TB Vaccine R&D Has Turned a Corner

- First demonstration that a vaccine can protect Mtb-infected adults from developing TB disease
- Proof of concept that a subunit vaccine (2 Mtb antigens plus adjuvant) can protect against TB disease
- New use for old vaccine - protect high risk, uninfected populations from Mtb infection with BCG revaccination
- Opportunity to discover correlates of protection and increase understanding of protective human immune responses
- Human efficacy data to inform optimization and use of preclinical models

➢ Leverage results to accelerate development through delivery
IAVI gratefully acknowledges the generous support provided by the following major donors:

As of May 2018
Thank you