TB laboratory Diagnosis

Jean de Dieu IRAGENA
TB Diagnostics and Laboratory Strengthening Unit
Stop TB Department
World Health Organization, Geneva
Diagnostics pipeline

Abbreviations: DST Drug susceptibility test; NAAT Nucleic acid amplification test; LTBI Latent TB infection; POC Point of care; MODS Microscopic observation drug-susceptibility; NRA Nitrate reductase assay; CRI Colorimetric redox indicator assay; LED Light-emitting diode; LPA Line probe assay
Policies not recommended

• ‘Negative’ policy (do-not-use)
 – 2011: Commercial serodiagnostics
 – 2011: IGRAs (high TB or HIV burden settings)
Coming in 2012 - 2013

• Laboratory biosafety
 – Procedure (risk)-based, minimum requirements

• Guidance on drug susceptibility testing
 – Update on 2008 guidance; New drugs

• LPA update
 – Improved 1st-line LPA; New 2nd-line LPA (XDR)

• Evaluation of new technologies
 –
TB laboratory scale-up

Driven by

- Case detection moving towards universal access
- HIV- associated and drug resistant TB

Challenged by

- Weak health systems
- Inadequate human resources
- Insufficient programmatic and managerial capacity
- Inadequate infrastructure (biosafety)
- Problems of availability and access
- Slow technology transfer
- Lack of recognition of laboratory importance in TB control, weak communication between NTPs and laboratory services
Core elements of laboratory services

- Policy framework for implementing new TB diagnostics
- Laboratory infrastructure and maintenance
- Equipment validation and maintenance
- Specimen referral and transport mechanisms
- Laboratory commodity and supply chain management
- Laboratory information and data management systems
- Laboratory quality management systems
- Laboratory human resource development
Considerations for GF proposals

- Local epidemiology (TB, HIV, MDR-TB)
- NTP priorities for case detection (risk groups)
- National TB laboratory strategic plans
- GLI Roadmap for TB Laboratory Strengthening
- WHO Policy Framework for implementing new TB diagnostics at country level
- Laboratory networks and capacity
 - Placement of different technologies
 - Number and type of laboratories at each service level
- Laboratory staff resources and skills base
- Budget for a comprehensive laboratory network
Common mistakes

• TB laboratory component not linked to country epidemiological assessment or related gap analyses
• Lack of strategic plans for introduction of new TB diagnostics, including country case finding strategies and diagnostic algorithms
• Lack of indication of how and where TB laboratory services fit into overall proposals (e.g. links to HIV-associated TB and MDR-TB components)
• Insufficient gap analyses of TB laboratory services
• Lack of detail on plans for external quality assurance
• Lack of training plans based on human resource needs assessment
• Unclear technical assistance needs and plans
• Incomplete and under-estimated budgets (e.g. focused on laboratory commodities only)
Helpful tools and references (1)

- WHO Briefing Note on TB laboratory strengthening
 [Link to Briefing Note](http://www.stoptb.org/wg/kg/assets/documents/BRIEFING%20NOTE%20LABS%20for%20GC.pdf)

- GLI Roadmap for TB Laboratory Strengthening
 [Link to GLI Roadmap](http://www.stoptb.org/wg/kg/assets/documents/GLI%20Roadmap%20First%20Issue%20201011.pdf)

- WHO policies and supporting documents
 - Microscopy
 - [Link to Microscopy Documents](http://whqlibdoc.who.int/publications/2011/9789241501613_eng.pdf)
 - [Link to Microscopy Documents](http://whqlibdoc.who.int/publications/2011/9789241501606_eng.pdf)
 - Culture, species identification and drug-susceptibility testing
 - [Link to Culture Documents](http://whqlibdoc.who.int/hq/1998/WHO_TB_98.258_(part3).pdf)
 - [Link to Culture Documents](http://whqlibdoc.who.int/publications/2011/9789241501620_eng.pdf)
 - Molecular testing (LPA and Xpert MTB/RIF)
 - [Link to Molecular Testing](http://www.who.int/tb/laboratory/line_probe_assays/en/index.html)
 - [Link to Molecular Testing](http://whqlibdoc.who.int/publications/2011/9789241501545_eng.pdf)
 - [Link to Molecular Testing](http://whqlibdoc.who.int/publications/2011/9789241501569_eng.pdf)
 - [Link to Molecular Testing](http://www.who.int/tb/features_archive/factsheet_xpert_may2011update.pdf)
Helpful tools and references (2)

• Laboratory biosafety

• Training and supporting tools
 http://wwwn.cdc.gov/dls/ila/acidfasttraining/
 http://www.stoptb.org/wg/gli/documents.asp (see GLI laboratory toolbox)

• Quality assurance
 Others: see GLI laboratory toolbox http://www.stoptb.org/wg/gli/documents.asp

• Costing & Budgeting tool

Additional supporting documents can be found on WHO and GLI web sites:
http://www.stoptb.org/wg/gli/default.asp
Transfer of technology: learning by doing

- EXPAND-TB Project: 27 countries including 10 in AFR
 - Liquid culture and Drug Susceptibility Testing (DST)
 - Rapid speciation
 - Line Probe Assay (LPA)

- Xpert MTB RIF roll out
EXPAND-TB progress July 2011

Laboratory assessment
- Laboratory assessment
- Memorandum of understanding
- Infrastructure upgrade
- Creation of SOPs policy reform

Technology transfer
- Equipment and supplies
- Procurement
- Training
- Quality assurance
- Laboratory validation

Routine testing and monitoring
- Monitoring and evaluation
- Impact assessment
- Market dynamics

Timeline
- **18–24 months**
 - Bangladesh
 - Belarus
 - Indonesia
 - Peru
 - Kazakhstan
 - Senegal
 - Viet Nam

- **6–12 months**
 - Azerbaijan
 - Cameroon
 - Côte d’Ivoire
 - Djibouti
 - Georgia
 - Haiti
 - Kenya
 - Kyrgyzstan
 - Republic of Moldova
 - Swaziland
 - Tajikistan
 - UR Tanzania

- **Up to year 5**
 - Ethiopia
 - India
 - Lesotho
 - Myanmar
 - Uganda
 - Uzbekistan
Cases of MDR-TB reported by selected countries participating in the EXPAND-TB project, 2008–2010

- **India**
 - 2008: 342
 - 2009: 1660
 - 2010: 2967

- **Uzbekistan**
 - 2008: 308
 - 2009: 654
 - 2010: 1023

- **Uganda**
 - 2008: 26
 - 2009: 57
 - 2010: 93
Xpert MTB/RIF

- Coordination of initial roll-out
 - 35 countries as of Q2 2011
 - Multiple partners

- Monitoring of sales & price reduction
 - Cartridge sales doubling by quarter
 - 600,000 sales expected by end 2011

- Scale-up via UNITAID
 - Early price reduction
 - Increased access
 - Market penetration (private sector)
 - Innovation
Xpert MTB/RIF roll-out

Progress in the roll-out of Xpert MTB/RIF, as of June 2011

GeneXpert modules ordered:
- 0
- 1–4
- 5–14
- 15–29
- ≥30
- Not eligible for preferential pricing
- No data
- Not applicable
Considerations for Xpert MTB/RIF

• Diagnostic algorithm

• Operational conditions
 • stable electricity supply
 • operating temperatures
 • storage space for cartridges
 • Testing capacity of 4 module system per working day is 15-20 tests
 • annual calibration
 • bio-safety conditions similar to smear microscopy

• Preferential prices for eligible countries
 • GeneXpert system, 4 module with desktop: 17’000 $
 • GeneXpert system, 4 module with desktop: 17’500 $
 • Cartridge: 16.86 $

• Installation and running costs
Selection of individuals to test based on risk assessment: summary

A. Individuals at risk of MDR-TB
 - Diagnosed with TB or
 - Suspected of having TB

B. HIV (+) individuals (or HIV unknown in high HIV settings) suspected of having TB
 - HIV (-) individuals not at risk of MDR-TB with either:
 - Abnormal CXR
 - Sputum smear (-) but still suspected of having TB

Primary considerations

Secondary considerations

Xpert MTB/RIF

TB, Rif resistance
 - Enrol on MDR-TB regimen
 - DST FLD and SLD
 - ART if HIV +

TB, no Rif resistance
 - Treatment regimen based on patient history
 - ART if HIV +

No TB detected
 - Appropriate further clinical management
 - IPT if HIV +
Practical considerations: installation and running costs

Sample annual itemized budget

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeneXpert 4 module with laptop (Ex-Works price)</td>
<td>$17,500.00</td>
<td>>60% price reduction compared to EU/US</td>
</tr>
<tr>
<td>Shipment</td>
<td>$1,000.00</td>
<td>Depends on destination</td>
</tr>
<tr>
<td>Uninterruptible Power Source</td>
<td>$500.00</td>
<td>Local purchase, depends on the market</td>
</tr>
<tr>
<td>Printer</td>
<td>$200.00</td>
<td>Local purchase, depends on the market</td>
</tr>
<tr>
<td>B Maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual calibration costs</td>
<td>$1,800.00</td>
<td>Highest price if done in Cepheid Toulouse</td>
</tr>
<tr>
<td>C Consumables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost per cartridge</td>
<td>$16.86</td>
<td>75% price reduction compared to EU</td>
</tr>
<tr>
<td>Number of working days per year</td>
<td>250</td>
<td>Number can vary depending on local context</td>
</tr>
<tr>
<td>Average number of tests per instrument /day</td>
<td>15</td>
<td>Number can vary depending on working hours</td>
</tr>
<tr>
<td>Number of tests/1 year/ full load 1 instrument</td>
<td>3750</td>
<td>G*H</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Losses due to damage/incorrect use (high estimate 10%)</td>
<td>375</td>
<td>10% of I</td>
</tr>
<tr>
<td>E HR costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technician annual salary</td>
<td>$5,000.00</td>
<td>Country-specific</td>
</tr>
<tr>
<td>Training and TA</td>
<td>$5,000.00</td>
<td>Depends on the needs</td>
</tr>
<tr>
<td>F Installation costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$19,200.00</td>
<td>A+B+C+D</td>
</tr>
<tr>
<td>G Running costs (annual, 1 instrument)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$71,347.50</td>
<td>E+F*(I+J)</td>
</tr>
<tr>
<td>O GRAND TOTAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$100,547.50</td>
<td>N+M+L+K</td>
</tr>
</tbody>
</table>