SECTION 2

NEW ROAD SAFETY LAWS: PROGRESS TO DATE
Encouraging a culture of safe road behaviour that in turn achieves sustained reductions in road traffic injuries requires persistent attention. Nonetheless, many countries have, within a relatively short timeframe, implemented and enforced effective legislation to reduce speeding and drink–driving, and increase use of motorcycle helmets, seat-belts and child restraints. Sustaining high levels of enforcement and maintaining a high perception of enforcement among the public are essential to the success of such legislative measures (4).

This report shows that road safety legislation has been strengthened in 35 countries, representing almost 10% of the world’s population. These countries passed laws to address one or more key risk factors affecting road traffic injuries and fatalities – speed, drink–driving, motorcycle helmet use, seat-belts, and child restraints.

While 94 countries now have national laws that address all five key risk factors to some degree, there has been no increase since the end of 2008 in the number of countries with comprehensive laws covering all five risk factors: only 28 countries (with just 7% of the world’s population) have comprehensive laws in all five areas (see Figure 12). Of these 28 countries, only four (Estonia, Finland, France and Portugal) also rate their enforcement of these laws as “good”, 1 showing that much more work is needed to ensure the effectiveness of these laws.

Extending coverage of comprehensive legislation that addresses all five key risk factors has stalled since 2008. Unless the pace of change is accelerated, the United Nations’ General Assembly target of having 50% of countries with comprehensive legislation by 2020 will not be reached.

1 Defined as 8 or more on a scale of 0 to 10. See Explanatory Note 2, page 45.
Progress to reduce excessive speed has stalled

Speeding is a major road safety problem in all countries. Faster driving speeds increase the likelihood of a crash occurring, and the severity of the crash consequences. Interventions to reduce speed can lead to significant reductions in road traffic injuries. In urban areas, with high concentrations of pedestrians and cyclists, measures to reduce speed are critical to the safety of these road users.

Excessive speed is a worldwide problem affecting the entire road network (motorways and highways, and rural and urban roads). Speed limits vary by road type and most of the best practice identified in this area has come from high-income countries (4, 14). At present, even in high-performing countries, there is diversity in speed limits used for particular road types, but most countries follow a hierarchical approach and adopt speed limits within the following levels:

- Higher speed roads: motorways, expressways and multi-lane divided highways ideally ensure no contact between motorized and non-motorized traffic and have barriers to separate opposing directions of traffic. In general they have the lowest rates of road injuries because of these features. In most high-income countries, speed limits are set at between 90–130 km/h.
- Rural roads: single lane carriageways in rural areas include many different types of roads, and speed limits in high-performing countries vary from 70–100 km/h. These roads have much higher rates of injuries than higher speed roads, because of large differences in speed between various types of user. However, the wide range of definitions used to classify rural roads, and the fact that their speed needs to be adapted to different circumstances along the length of rural roads, makes it difficult to compare rural road safety across countries.
- Urban roads: roads in towns and cities are usually shared by pedestrians, cyclists, users of public transport as well as higher speed traffic. While 50 km/h is considered best practice for urban speed limits, there is much
Reducing urban speeds protects pedestrians and cyclists

Setting speed limits according to the designated function of particular roads is an effective measure to reduce road traffic injuries. A number of countries considered leaders in road safety, such as Australia and Sweden, have adopted universal urban speed limits of 50 km/h, based on the effectiveness of this measure in reducing injuries and deaths. Although well over half of all countries (114) apply this urban speed limit, these countries represent less than half (47%) of the world’s population (see Figure 13). Between 2008 and 2011, six countries improved their urban speeding laws, protecting an additional 246 million people, but more effort is needed to encourage governments to adopt maximum urban speed limits of 50 km/h.

Pedestrians and cyclists are especially at risk of an injury as a result of excessive vehicle speeds. This vulnerability means particular attention needs to be paid to speed limits in areas with high concentrations of these road users, such as around schools or in residential neighbourhoods (4, 14).

Traffic calming measures that reduce vehicle speeds in these areas are proven effective in reducing road traffic injuries. For example, introducing 30 km/h zones in residential areas in the UK resulted in overall vehicle speed reductions of 15 km/h and cut vehicle crashes with child pedestrians and cyclists by 67% (15).

However, nearly half of all countries (82) lack enabling legislation that permits local authorities to modify national speed limits, thus limiting the ability of subnational governments to implement effective road safety measures within their jurisdictions. This is further reflected in the low proportion of countries (37%) that have urban speed limits of 30 km/h or less around schools.

Taken together, this means that just 59 countries both implement national urban speed limits of less than or equal to 50 km/h and allow local authorities to further reduce these limits where appropriate. These countries represent 2.67 billion people, or just 39% of the world’s population.

Figure 13
Urban speed laws by country/area
Only 59 countries, covering just 39% of the world’s population (2.67 billion people), have implemented an urban speed limit of 50 km/h or less and allow local authorities to reduce these limits.

Speed limits need stronger enforcement

Although most countries have enacted national speed limit laws, their enforcement is often lacking: only 26 countries rate enforcement of their national speed limits at “good” (8 or above on a scale of 0 to 10). Even in high-income countries, which tend to have more financial resources to dedicate to enforcement, speed law enforcement remains weak, with only 20% of high-income countries reporting good enforcement. Enforcement of speed limits is essential for successfully developing safer driving behaviour and needs to be given increasing emphasis in most countries.
Drink–drive laws should be based on blood alcohol concentration levels

Drinking and driving increases the risk of being involved in a crash, as well as the severity of resulting injuries. Driving starts to be impaired at very low levels of alcohol consumption, with the risk of crash involvement growing rapidly as consumption increases. The vast majority of adult drivers are affected or impaired with a blood alcohol concentration (BAC)\(^1\) of 0.05 g/dl, while at a BAC level of 0.1 g/dl the crash risk is approximately five times higher than that of someone with a BAC level of zero (16, 17). Young and novice drivers who drink and drive have a greatly increased risk of a crash compared to more experienced drivers (4, 18). The effects of alcohol impairment are magnified when combined with fatigue. This explains why alcohol is considered a particular risk for commercial drivers, who spend long hours on the road and also have legal responsibilities for the passengers or cargo they carry.

Strong drink–drive laws protect almost 70% of world’s population

A variety of BAC limits are in place across the world. Setting and enforcing legislation on BAC limits of 0.05 g/dl can lead to significant reductions in alcohol-related crashes (4, 19, 20). Since 2008, there has been progress in strengthening drink–driving legislation: 89 countries, covering 66% of the world’s population (4.55 billion people), now have a comprehensive drink–driving law, defined as a BAC limit of 0.05 g/dl or less, which is in line with best practice (see Figure 14). High-income countries are more likely to have a legal BAC limit of 0.05 g/dl or less (67%) than are middle- or low-income countries (49% and 21%, respectively). Even in the 17 countries where alcohol consumption is legally prohibited, a drink–driving law based on a BAC of less than or equal to 0.05 g/dl is recommended, and is already in place in a number of countries, such as Mali, Morocco and the United Arab Emirates. Nonetheless, there remains a need for more action in this area: 34 of the world’s countries either have no drink–driving law at all, or implement a law based on measures that are less robust than BAC (such as assessing a person’s level of intoxication, using clinical signs and symptoms) (see Figure 14).

More stringent drink–drive laws for high-risk drivers

Inexperienced young adults driving with a BAC level of 0.05 g/dl are more than twice as likely to have a road traffic crash than are more experienced drivers (18, 21), while commercial drivers are also considered a high-risk group for alcohol-related crashes. Setting lower BAC limits (0.02 g/dl or less) for both groups is an effective means of reducing crashes related to drink–driving (19): 42 countries (23%) apply BAC limits of 0.02 g/dl or less among young and novice drivers, while the figure for commercial drivers is slightly higher, at 27%. High-income countries are more likely to have these laws in place than are low- or middle-income countries (see Figure 15).

Drink–drive laws need stronger enforcement

Enforcement of drink–driving laws has been shown to be more effective when it includes random breath tests for all drivers (not just those suspected of drinking), and when it is carried out at times and in locations when drink–driving is more likely to occur (22, 23, 24). Such measures that increase drivers’ perception of the likelihood of being apprehended are key to the success of this intervention (22, 25).

Random breath testing is used by 74% of the world’s countries to help enforce drink–driving laws, but this figure varies with country income status, with 88% of

\(^1\) The amount of alcohol present in the bloodstream, usually measured in grams per decilitre (g/dl).
high-income, 77% of middle-income, and 45% of low-income countries adopting this practice. Despite global progress in strengthening drink–driving legislation, only 39 countries rate their enforcement as “good” (8 or above on a scale of 0 to 10), indicating that better implementation of these laws needs urgent attention.

Almost half of all countries lack data on alcohol-related road traffic deaths

Assessing the contribution of drink–driving to road traffic crashes in a country is an important tool in designing and targeting drink–driving prevention work. However, in many countries this information is unavailable or unreliable. Where data are collected, different methodologies are used. For example, some countries test all drivers killed in a road traffic crash for blood alcohol, while others test a sample from particular hospitals which may include those both injured and killed. These variations can both distort alcohol-related figures and make comparing this information across countries problematic.

Testing all fatally injured drivers for blood alcohol levels is considered best practice, but this occurs in only 73 countries. Just 52% of countries surveyed could provide some data on alcohol-related fatal road crashes.
Head injuries among motorcyclists are a growing concern

Rapid growth in the use of motorized two-wheeled vehicles in many countries has been accompanied by increases in injuries and fatalities among their users (26). Motorcyclists comprise a third of all road traffic deaths in the South-East Asia and Western Pacific Regions, but are also increasingly represented among deaths in Africa and the Americas, which are seeing rapid increases in motorcycle use. Head and neck injuries are the main cause of severe injury, disability and death among motorcycle users. In European countries, head injuries contribute to approximately 75% of deaths among motorcycle users; in some low- and middle-income countries, head injuries are estimated to account for up to 88% of such fatalities. Wearing a standard, good quality motorcycle helmet can reduce the risk of death by 40% and the risk of serious injury by over 70% (27). Introducing and enforcing legislation on helmet use is effective at increasing helmet-wearing rates and reducing head injuries (28, 29).

Progress has been made in the number of countries whose helmet laws apply both to motorcycle drivers and passengers, on all road types and regardless of engine type. This figure has risen from 131 countries in 2008 to 155 countries in 2011 (covering 88% of the world’s population). High-income countries are more likely to have enacted comprehensive helmet laws than are middle- and low-income countries. To effectively reduce the head injuries associated with motorcycle use, countries need to review their helmet legislation and tighten provisions that limit the coverage and potential effectiveness of such laws, so that all those using motorcycles are protected by the use of a helmet, at all times, on all roads and on all engine types.

To be effective, helmet legislation needs to be supported by strong enforcement and social marketing campaigns (30)(see Box 4). While there has been progress in adopting helmet legislation globally, only about one-third of countries rate enforcement of helmet laws as “good” (8 or above on a scale of 0 to 10), showing that this critical component of road traffic safety remains neglected.

More effort is needed to promote helmet standards and quality

About half of all participating countries (98) apply a helmet standard. Helmets must meet recognized safety standards with proven effectiveness in reducing head injuries to reduce the impact of road traffic crashes. While there are a number of internationally recognized standards, it is important that a particular government’s helmet standard is suitable for the traffic and weather conditions of the country, and is both affordable and available to users (26). Furthermore, governments need to ensure that mandatory helmet laws are linked to the helmet standard used, whether an international or country-specific standard. In this way, use of substandard helmets can be a violation of the law, and thereby incur penalties that will act as a deterrent. As illustrated in the Viet Nam case study (see Box 5), enforcing helmet standards can be complicated, and countries need to provide training to enforcement officers on how to identify substandard helmets.

90 countries, representing 77% of the world’s population, have a comprehensive helmet law covering all riders, all roads and all engine types, and apply a helmet standard.
BOX 4. CAMBODIA: HELMET LEGISLATION AND ENFORCEMENT SUPPORTED BY A HARD-HITTING SOCIAL MARKETING CAMPAIGN

Between 2005 and 2010, the number of road traffic fatalities in Cambodia doubled. Today, more than 1,700 people die each year on the country’s roads. Over 80% of these deaths are among motorcycle users, with three-quarters of these fatalities the result of serious head injuries.

In 2009, Cambodia revised its traffic laws, and passed a law requiring motorcycle drivers to wear a helmet. However, despite initial increases in helmet use following the law’s adoption, wearing rates among helmet drivers have since remained at approximately 80%, although much higher in the capital, Phnom Penh, than in rural provinces.

Since 2010 the government of Cambodia has embarked upon a programme to increase helmet wearing through enhanced enforcement and legislative action. This programme includes building police capacity to enforce the law and implement helmet checkpoints, and revising legislation to increase penalties for non-compliance. In 2012, the Cambodian government took the next step in supporting their legislative and enforcement efforts with a campaign to increase public awareness: materials shown to be effective at increasing helmet use in other countries were tested through focus groups, and adapted to the Cambodian situation. For example, the research suggested that showing graphic images of a road traffic crash and the threat of enforcement were considered effective among the target audience, and these elements were incorporated into the final media products. A series of TV commercials, radio adverts, print, “out of home” advertising and billboards were disseminated from July to the end of November 2012. Early results suggest high recall and reach of this campaign, although a more comprehensive evaluation will be required to assess if the ultimate goal of increasing helmet wearing has been achieved.

The government is currently working with other national partners to extend the existing helmet law to include passengers – to date passenger helmet rates are very low, at under 10%. The amended law is currently under review with the national parliament: in view of this, national road safety stakeholders have developed an additional component to the campaign, targeted specifically at enforcement of the passenger helmet law. This will be disseminated as soon as passenger helmet wearing is signed into law.

“Protect yourself from hefty fines and serious head injuries. Wear a helmet.”
Taken together, this means that 90 countries meet both the criteria considered here as essential for comprehensive helmet legislation to be met, that is, they have implemented a helmet law that covers all road users, all road types and all engine types, and they apply a national or international helmet standard. In the Western Pacific and South East Asia regions, which have the highest proportion of motorcyclist deaths, the proportion of countries covered by such laws is 56% and 64% respectively.

Data on helmet wearing is weak
Countries need to implement measures to periodically assess helmet wearing rates, to target efforts and resources effectively, and to evaluate the effects of helmet programmes, including the impact of mandatory helmet legislation. In most countries, these data come from periodic observational studies conducted according to an acceptable study design that ensures the reliability and validity of results.

Only 69 countries have any type of data on rates of helmet wearing, either on drivers, passengers or both, with wearing rates ranging from under 10% in Ghana and Jamaica to almost 100% in the Netherlands and Switzerland. In particular, there is a lack of data on helmet-wearing rates from low-income countries in the African, Eastern Mediterranean and Western Pacific regions. Given the increasingly high proportion of motorcycle deaths globally, governments need to support data collection efforts that provide good estimates of helmet wearing rates on a regular basis in their countries.

Figure 16
Motorcycle helmet laws and helmet standards, by country/area
BOX 5. VIET NAM: HELMET STANDARDS AND QUALITY

More than 11,000 people are killed each year on Viet Nam’s roads. Motorcycles represent 95% of registered vehicles, so the correct wearing of quality helmets is a vitally important road safety intervention to prevent head injuries.

In 2007 Viet Nam introduced new, comprehensive legislation on motorcycle helmet use which – supported by stringent enforcement – led to high wearing rates (over 90%) that have since been maintained. However, while the vast majority of motorcycle riders and passengers are currently wearing helmets, there are concerns about the type, quality and protective ability of many of them. Viet Nam’s national quality standard for helmets (QCVN2) was issued in 2008 and promulgates specific requirements for a high degree of impact protection.

Vietnamese standard QCVN2 helmets do not provide the same degree of protection as a UNECE 22 standard helmet, which is considered the gold standard for motorcycle helmets globally. Nonetheless, the tropical climate, the predominance of motorized two-wheelers in the vehicle fleet (and lower average travelling speeds), and the considerably lower cost makes these helmets appropriate and suitable to the Vietnamese conditions and market.

While Viet Nam now has both mandatory motorcycle helmet legislation and a national quality standard, there is currently no linkage between the two, i.e. to oblige motorcycle riders to wear a helmet that conforms to this standard. In high-performing road safety countries, such as Australia and the United Kingdom, the national helmet standard is specifically referenced in road safety legislation. In Viet Nam, however, police cannot penalise the wearing of substandard helmets and, as such, their use has proliferated since the 2007 helmet law was passed. Recent surveys have found that 82% of helmets worn by motorcycle riders fail to provide the minimum helmet protection required under QCVN2. Furthermore, over half of all new helmets on the market (all of which were registered and labelled as meeting the national standard) also failed testing.

The most common form of substandard helmets worn in Viet Nam comprise only a fragile plastic shell with no expanded polystyrene layer to absorb the energy of an impact in the event of a crash. The extent of substandard helmets could seriously undermine the injury prevention potential of an otherwise successful helmet legislation programme.

A comprehensive approach is currently underway to stop the proliferation of substandard helmets: legislation is being reviewed, possible enforcement mechanisms are being investigated, and a national social marketing campaign is being developed to encourage motorcyclists to consider safety and head protection when choosing a helmet, not just avoiding a fine.
Seat-belts reduce the risk of a fatal injury by up to 50% for front seat occupants, and up to 75% for rear seat occupants.
Progress has been made to protect rear-seat car occupants through implementation of comprehensive seat-belt laws: 111 countries (69% of the world’s population) now have comprehensive seat-belt laws covering all occupants.

Number of countries do not apply these laws to both front and rear seat occupants. Comprehensive seat-belt laws covering all occupants are in place in 111 countries, meaning 69% of the world’s population (4.8 billion people) are fully protected by these laws (see Figure 17). Ten countries, covering 182 million people, put in place comprehensive seat-belt laws since 2008. But more needs to be done to convince political leaders and police authorities that seat-belt use can save lives, and to work to strengthen seat-belt legislation in line with best practice (see Box 6).

Enforcing seat-belt laws needs more emphasis

To effectively increase seat-belt wearing rates, governments need to support legislation with strong and sustained police enforcement. Despite improvements in seat-belt legislation in many countries, much more is needed to improve enforcement: only a quarter of all countries rate their seat-belt enforcement as “good” (8 or above, on a scale of 0 to 10), showing that improved enforcement and public awareness campaigns on seat-belt use are needed to increase compliance with legislation.

Only half of countries collect seat-belt wearing data

Collecting information on seat-belt wearing rates is an important mechanism for countries to target resources and evaluate the effectiveness of seat-belt programmes. The ability to show an increase in seat-belt use is important to sustain political and community support for enforcement measures.

Just under half of all countries have data on seat-belt wearing rates, with this number disproportionately lower in low- and middle-income countries (6% and 43%, respectively) compared to high-income countries (80%). Data that are disaggregated to show wearing rates among rear seat passengers are useful for targeting programmes aimed at increasing rates among rear seat passengers.
BOX 6. TURKEY: SEAT-BELT WEARING RATES

In 2011, a seat-belt campaign was conducted in Afyonkarahisar, Turkey. Unfortunately, this was not accompanied by strong enforcement, and consequently seat-belt wearing rates remained below 5%. Lessons learned from this first campaign include the need to combine social marketing efforts with law enforcement and also to ensure that no categories of drivers or passengers are exempt from the law. The road safety law is currently being revised to close gaps that currently exempt certain vehicle occupants, but in the interim, the Governor of Afyonkarahisar issued a decree in March 2012 requiring all drivers to wear seat-belts. This decree was accompanied by:

• extensive awareness raising activities;
• an intensive social marketing campaign using radio and TV, billboards and outdoor advertising on buses;
• support from local media in raising awareness about seat-belt wearing;
• highly visible enforcement by trained police; and
• regular monitoring of progress by both academics and politicians.

Initial assessments showed that the seat-belt wearing rate had increased to about 49% (see Figure 18). Based on these encouraging improvements, the Governor of Ankara issued a similar decree in August 2012.

“Seat-belt wearing is mandatory by law. There is no exemption for anybody, including me.”

Governor of Afyonkarahisar

Figure 18
Proportion of all occupants wearing seat-belts in Afyonkarahisar, Turkey

Governor issued a decree encouraging all occupants to wear seat-belts
INCREASING THE USE OF CHILD RESTRAINTS

More countries need to adopt child restraint laws

Child restraint systems protect infants and young children from injury during a crash. Infants and children need child restraint systems that can accommodate their size and weight, and that can adapt to different stages of their development. Child restraints reduce the likelihood of a fatal crash by approximately 70% among infants and between 54% and 80% among young children (20, 36).

Child restraints are not automatically installed in vehicles – unlike seat-belts – and must be purchased and fitted by parents. This makes it more challenging to achieve high usage rates, especially in low- and middle-income countries. Appropriate child restraint use may be limited by access and cost, or be impractical because of large family size. In addition, parents must make a number of decisions about what type of child restraint to choose, where to place it and how to install it, which can also limit uptake. A lack of awareness about the benefits of appropriate and correctly used restraints can restrict their effectiveness too.

Over the past decade, vehicle safety technology has made an important contribution in improving correct installation of child restraints. In particular, to make the fitting of child restraints in cars both simpler and more secure, the ISOFIX system of child restraints uses plug-in attachments rather than adult belts to secure the seat (37, 38). This requires sockets in vehicles and specially designed seats, which is becoming standard in vehicle design across industrialized countries and has been an important factor in contributing to improved crash performance of cars (see Box 10, page 35).

Ninety-six countries have a law requiring child restraints. The majority of high-income countries have child restraint laws in place, while such laws are far less common in low- and middle-income countries (see Figure 21). Most of the 51 European countries have enacted child restraint laws, but only one of 11 South-East Asia countries has passed such a law. Seven countries have passed a child restraint law since 2008.

Enforcement of child restraint laws remains low in most countries: only 17 countries (9%) rate their enforcement of child restraint laws as high or medium.

More than half of all countries have implemented a child restraint law, but these represent just 32% of the world’s population.

1 ISOFIX (International Organisation for Standardisation), 1999.
restraint laws as “good” (8 or above on a scale of 0 to 10). Even in high-income countries, enforcement of child restraint laws is lacking, with just 12 countries (24%) rating enforcement of their laws as good (see Figure 20).

Encouraging child restraint use

Increasing the use of child restraints calls for adoption and enforcement of specific legislation mandating restraints appropriate for different age groups, as well as efforts to raise public awareness about risks associated with non-use of restraints. However, given that cost and accessibility can limit child restraint use, governments need to explore ways to feasibly encourage uptake. These are particularly important in low- and middle-income countries, and may include mechanisms such as loan schemes, or the subsidized distribution of restraints in maternity wards.

Governments need to take steps towards:

› adopting and enforcing specific legislation relating to restraints appropriate for different age groups;
› raising public awareness about the risks associated with non-use of restraints;
› exploring mechanisms to encourage uptake of child restraints, given issues of cost and accessibility particularly in low- and middle-income countries;
› encouraging marketing of child restraints by vehicle manufacturers and retailers;
› collecting data on the extent of use of different types of child restraints.

The majority of high-income countries (88%) have child-restraint laws in place, while such laws are far less common in low- and middle-income countries (30% and 43%, respectively).
Involving multiple sectors in national road safety efforts is critical

Countries need a lead agency for road safety, which should have the authority to make decisions, manage resources and coordinate efforts of all participating governmental sectors, including those of health, transport, education and law enforcement. Lead agencies may take the form of a designated stand-alone bureau, or a committee or cabinet representing several different government agencies. One hundred and sixty-two countries (89%) have a lead agency for road safety, of which 122 are funded. Most of these lead agencies (81%) fulfill coordination functions, while 80% fulfill legislative functions and 71% are involved in establishing data systems to monitor road safety and disseminate national statistics.

National road safety strategies should include targets to minimize injuries, deaths and key risk factors

The development of a national road safety strategy with precise targets and funding for implementation is a key element of sustained road traffic injury prevention efforts. Each country should have a road safety strategy that is multisectoral – involving agencies concerned with transport, health, law enforcement, education and other relevant sectors – and also multidisciplinary, involving both government and nongovernment stakeholders. Currently, 139 countries have a single or multiple national strategies on road safety. Governments also need to ensure sufficient resources to effectively develop, implement and monitor activities included in their national strategies; of 139 countries with national strategies, 119 are partially or fully funded.

Setting targets to improve and assess road safety performance has become increasingly important in a number of high-income countries. Targets that are realistic, attainable and time-bound can motivate stakeholders and hold road safety leaders accountable for achieving defined results. While 112 countries (62%) include fatality targets in their national strategies, only 62 countries (34%) include targets on non-fatal injuries – in part due to the difficulty in defining and counting non-fatal injuries. Governments should also include targets on intermediate outcomes in their strategies, such as increases in helmet wearing, reductions in drink-driving; only a third of countries have data on all five key risk factors. Setting interim targets can be very helpful in obtaining and sustaining community and political support for longer-term road safety measures as well as in identifying emerging issues, but requires that countries have and can continue to collect data on the interim measures.
BOX 7. MOBILE PHONE USE WHILE DRIVING

Distracted driving is a serious and growing threat to road safety. There are different types of driver distraction, but use of mobile phones while driving is a primary concern. Evidence suggests that mobile phone use while driving is increasing rapidly, along with the exponential growth in mobile phone use more generally.

Drivers using a mobile phone are approximately four times more likely to be involved in a crash than those not using a phone. This risk is similar for both hand-held and hands-free phones; text messaging appears to have an even more severe impact on the risk of a crash (42, 43).

Most countries have laws on mobile phone use while driving

To date, there is little information on the effectiveness of interventions to reduce mobile phone use while driving (44). As a result, some countries follow approaches similar to those proven successful in addressing other key road safety risk factors, including bans on mobile phone use, sustained enforcement, and public awareness campaigns. Most countries restrict mobile phone use while driving: 142 countries (covering 93% of the world’s population) have laws prohibiting use of hand-held phones, while 34 countries also prohibit use of hands-free phones; 42 countries specifically prohibit text messaging.

Prevalence of mobile phone use while driving is largely unknown

The proportion of drivers using mobile phones has increased over the past 5–10 years, in some countries up to 11%, with hands-free mobile phone usage likely even higher. However, in many countries the extent of this problem remains unknown, as data on mobile phone use is not routinely collected when a crash occurs. Fifty-three countries (29%) routinely collect data on mobile phone use while driving, while another 12 have conducted specific studies to assess the extent of this problem. More work is needed to improve the systematic collection of data on mobile phone use in crashes to assess the extent and distribution of the problem.