History of guideline development
The 1958, 1963 and 1971 WHO International Standards for Drinking-water did not refer to antimony. In the first edition of the Guidelines for Drinking-water Quality, published in 1984, it was concluded that no action was required for antimony. A provisional guideline value for antimony was set at a practical quantification level of 0.005 mg/litre in the 1993 Guidelines, based on available toxicological data.

Assessment date
The risk assessment was conducted in 2003.

Principal reference

12.8 Arsenic
Arsenic is widely distributed throughout the Earth’s crust, most often as arsenic sulfide or as metal arsenates and arsenides. Arsenicals are used commercially and industrially, primarily as alloying agents in the manufacture of transistors, lasers and semiconductors. Arsenic is introduced into drinking-water sources primarily through the dissolution of naturally occurring minerals and ores. Except for individuals who are occupationally exposed to arsenic, the most important route of exposure is through the oral intake of food and beverages. There are a number of regions where arsenic may be present in drinking-water sources, particularly groundwater, at elevated concentrations. Arsenic in drinking-water is a significant cause of health effects in some areas, and arsenic is considered to be a high-priority substance for screening in drinking-water sources. Concentrations are often highly dependent on the depth to which the well is sunk.

<table>
<thead>
<tr>
<th>Provisional guideline value</th>
<th>0.01 mg/litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>The guideline value is designated as provisional in view of the scientific uncertainties.</td>
<td></td>
</tr>
</tbody>
</table>

| Occurrence | Levels in natural waters generally range between 1 and 2 μg/litre, although concentrations may be elevated (up to 12 mg/litre) in areas containing natural sources. |

| Basis of guideline derivation | There remains considerable uncertainty over the actual risks at low concentrations, and available data on mode of action do not provide a biological basis for using either linear or non-linear extrapolation. In view of the significant uncertainties surrounding the risk assessment for arsenic carcinogenicity, the practical quantification limit in the region of 1–10 μg/litre and the practical difficulties in removing arsenic from drinking-water, the guideline value of 10 μg/litre is retained. In view of the scientific uncertainties, the guideline value is designated as provisional. |
Limit of detection 0.1 μg/litre by ICP/MS; 2 μg/litre by hydride generation AAS or FAAS

Treatment achievability It is technically feasible to achieve arsenic concentrations of 5 μg/litre or lower using any of several possible treatment methods. However, this requires careful process optimization and control, and a more reasonable expectation is that 10 μg/litre should be achievable by conventional treatment, e.g., coagulation.

Additional comments • A management guidance document on arsenic is available. • In many countries, this guideline value may not be attainable. Where this is the case, every effort should be made to keep concentrations as low as possible.

Toxicological review

Arsenic has not been demonstrated to be essential in humans. It is an important drinking-water contaminant, as it is one of the few substances shown to cause cancer in humans through consumption of drinking-water. There is overwhelming evidence from epidemiological studies that consumption of elevated levels of arsenic through drinking-water is causally related to the development of cancer at several sites, particularly skin, bladder and lung. In several parts of the world, arsenic-induced disease, including cancer, is a significant public health problem. Because trivalent inorganic arsenic has greater reactivity and toxicity than pentavalent inorganic arsenic, it is generally believed that the trivalent form is the carcinogen. However, there remain considerable uncertainty and controversy over both the mechanism of carcinogenicity and the shape of the dose–response curve at low intakes. Inorganic arsenic compounds are classified by IARC in Group 1 (carcinogenic to humans) on the basis of sufficient evidence for carcinogenicity in humans and limited evidence for carcinogenicity in animals.

History of guideline development

The 1958 WHO *International Standards for Drinking-water* recommended a maximum allowable concentration of 0.2 mg/litre for arsenic, based on health concerns. In the 1963 International Standards, this value was lowered to 0.05 mg/litre, which was retained as a tentative upper concentration limit in the 1971 International Standards. The guideline value of 0.05 mg/litre was also retained in the first edition of the *Guidelines for Drinking-water Quality*, published in 1984. A provisional guideline value for arsenic was set at the practical quantification limit of 0.01 mg/litre in the 1993 Guidelines, based on concern regarding its carcinogenicity in humans.

Assessment date

The risk assessment was conducted in 2003.

Principal references

12.9 Asbestos

Asbestos is introduced into water by the dissolution of asbestos-containing minerals and ores as well as from industrial effluents, atmospheric pollution and asbestos-cement pipes in the distribution system. Exfoliation of asbestos fibres from asbestos-cement pipes is related to the aggressiveness of the water supply. Limited data indicate that exposure to airborne asbestos released from tap water during showers or humidification is negligible.

Asbestos is a known human carcinogen by the inhalation route. Although well studied, there has been little convincing evidence of the carcinogenicity of ingested asbestos in epidemiological studies of populations with drinking-water supplies containing high concentrations of asbestos. Moreover, in extensive studies in animal species, asbestos has not consistently increased the incidence of tumours of the gastrointestinal tract. There is, therefore, no consistent evidence that ingested asbestos is hazardous to health, and thus it is concluded that there is no need to establish a health-based guideline value for asbestos in drinking-water.

History of guideline development

The 1958, 1963 and 1971 WHO *International Standards for Drinking-water* did not refer to asbestos. In the first edition of the *Guidelines for Drinking-water Quality*, published in 1984, it was noted that available data were insufficient to determine whether a guideline value was needed for asbestos. The 1993 Guidelines concluded that there was no consistent evidence that ingested asbestos was hazardous to health and that there was therefore no need to establish a health-based guideline value for asbestos in drinking-water.

Assessment date

The risk assessment was originally conducted in 1993. The Final Task Force Meeting in 2003 agreed that this risk assessment be brought forward to this edition of the *Guidelines for Drinking-water Quality*.

Principal reference

12.10 Atrazine

Atrazine (CAS No. 1912-24-9) is a selective pre- and early post-emergence herbicide. It has been found in surface water and groundwater as a result of its mobility in soil.