12.18 Carbofuran

Carbofuran (CAS No. 1563-66-2) is used worldwide as a pesticide for many crops. Residues in treated crops are generally very low or not detectable. The physical and chemical properties of carbofuran and the few data on occurrence indicate that drinking-water from both groundwater and surface water sources is potentially the major route of exposure.

<table>
<thead>
<tr>
<th>Guideline value</th>
<th>0.007 mg/litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurrence</td>
<td>Has been detected in surface water, groundwater and drinking-water, generally at levels of a few micrograms per litre or lower; highest concentration (30 μg/litre) measured in groundwater</td>
</tr>
<tr>
<td>ADI</td>
<td>0.002 mg/kg of body weight based on a NOAEL of 0.22 mg/kg of body weight per day for acute (reversible) effects in dogs in a short-term (4-week) study conducted as an adjunct to a 13-week study in which inhibition of erythrocyte acetylcholinesterase activity was observed, and using an uncertainty factor of 100</td>
</tr>
<tr>
<td>Limit of detection</td>
<td>0.1 μg/litre by GC with a nitrogen–phosphorus detector; 0.9 μg/litre by reverse-phase HPLC with a fluorescence detector</td>
</tr>
<tr>
<td>Treatment achievability</td>
<td>1 μg/litre should be achievable using GAC</td>
</tr>
</tbody>
</table>

Guideline derivation
- allocation to water: 10% of ADI
- weight: 60-kg adult
- consumption: 2 litres/day

Additional comments Use of a 4-week study was considered appropriate because the NOAEL is based on a reversible acute effect; the NOAEL will also be protective for chronic effects.

Toxicological review

Carbofuran is highly toxic after acute oral administration. The main systemic effect of carbofuran poisoning in short- and long-term toxicity studies appears to be cholinesterase inhibition. No evidence of teratogenicity has been found in reproductive toxicity studies. On the basis of available studies, carbofuran does not appear to be carcinogenic or genotoxic.

History of guideline development

The 1958 and 1963 WHO International Standards for Drinking-water did not refer to carbofuran, but the 1971 International Standards suggested that pesticide residues that may occur in community water supplies make only a minimal contribution to the total daily intake of pesticides for the population served. Carbofuran was not evaluated in the first edition of the Guidelines for Drinking-water Quality, published in 1984, but a
health-based guideline value of 0.005 mg/litre was established for carbofuran in the 1993 Guidelines, based on human data and supported by observations in laboratory animals. This value was amended to 0.007 mg/litre in the addendum to the Guidelines published in 1998, on the basis of the ADI established by JMPR in 1996.

Assessment date
The risk assessment was originally conducted in 1998. The Final Task Force Meeting in 2003 agreed that this risk assessment be brought forward to this edition of the *Guidelines for Drinking-water Quality*.

Principal references

12.19 Carbon tetrachloride
Carbon tetrachloride is used mainly in the production of chlorofluorocarbon refrigerants, foam-blowing agents and solvents. However, since the Montreal Protocol on Substances that Deplete the Ozone Layer (1987) and its amendments (1990 and 1992) established a timetable for the phase-out of the production and consumption of carbon tetrachloride, manufacture and use have dropped and will continue to drop. Carbon tetrachloride is released mostly into the atmosphere but also into industrial wastewater. Although it readily migrates from surface water to the atmosphere, levels in anaerobic groundwater may remain elevated for months or even years. Although available data on concentrations in food are limited, the intake from air is expected to be much greater than that from food or drinking-water.

<table>
<thead>
<tr>
<th>Guideline value</th>
<th>0.004 mg/litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurrence</td>
<td>Concentrations in drinking-water generally less than 5 μg/litre</td>
</tr>
<tr>
<td>TDI</td>
<td>1.4 μg/kg of body weight per day for hepatotoxic effects in a 12-week oral gavage study in rats, incorporating a conversion factor of 5/7 for daily dosing and applying an uncertainty factor of 500 (100 for inter- and intraspecies variation, 10 for the duration of the study and a modifying factor of 0.5 because it was a bolus study)</td>
</tr>
<tr>
<td>Limit of detection</td>
<td>0.1–0.3 μg/litre by GC with ECD or MS</td>
</tr>
<tr>
<td>Treatment achievability</td>
<td>0.001 mg/litre should be achievable using air stripping</td>
</tr>
</tbody>
</table>