Toxicological review
Chlorophenoxy herbicides, as a group, have been classified in Group 2B by IARC. However, the available data from studies in exposed populations and animals do not permit assessment of the carcinogenic potential to humans of any specific chlorophenoxy herbicide. Therefore, drinking-water guidelines for these compounds are based on a threshold approach for other toxic effects. Effects observed in long-term studies with beagle dogs given fenoprop in the diet include mild degeneration and necrosis of hepatocytes and fibroblastic proliferation in one study and severe liver pathology in another study. In rats, increased kidney weight was observed in two long-term dietary studies.

History of guideline development
The 1958 and 1963 WHO International Standards for Drinking-water did not refer to chlorophenoxy herbicides, including fenoprop, but the 1971 International Standards suggested that pesticide residues that may occur in community water supplies make only a minimal contribution to the total daily intake of pesticides for the population served. Fenoprop was not evaluated in the first edition of the Guidelines for Drinking-water Quality, published in 1984, but the 1993 Guidelines established a health-based guideline value of 0.009 mg/litre for fenoprop.

Assessment date
The risk assessment was originally conducted in 1993. The Final Task Force Meeting in 2003 agreed that this risk assessment be brought forward to this edition of the Guidelines for Drinking-water Quality.

Principal reference

12.63 Fluoride
Fluoride accounts for about 0.3 g/kg of the Earth’s crust and exists in the form of fluorides in a number of minerals. The most important source of fluoride in drinking-water is naturally occurring. Inorganic fluoride-containing minerals are used widely in industry for a wide range of purposes, including aluminium production. Fluorides can be released to the environment from the phosphate-containing rock used to produce phosphate fertilizers; these phosphate deposits contain about 4% fluorine. Fluorosilicic acid, sodium hexafluorosilicate and sodium fluoride are used in municipal water fluoridation schemes. Daily exposure to fluoride depends mainly on the geographical area. In most circumstances, food seems to be the primary source of fluoride intake, with lesser contributions from drinking-water and from toothpaste. In areas with relatively high concentrations, particularly in groundwater, drinking-water
becomes increasingly important as a source of fluoride. Intakes in areas where high-fluoride coal is used indoors may also be significant.

<table>
<thead>
<tr>
<th>Guideline value</th>
<th>1.5 mg/litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurrence</td>
<td>In groundwater, concentrations vary with the type of rock the water flows through but do not usually exceed 10 mg/litre; the highest natural level reported is 2800 mg/litre.</td>
</tr>
<tr>
<td>Basis of guideline derivation</td>
<td>Epidemiological evidence that concentrations above this value carry an increasing risk of dental fluorosis, and progressively higher concentrations lead to increasing risks of skeletal fluorosis. The value is higher than that recommended for artificial fluoridation of water supplies, which is usually 0.5–1.0 mg/litre.</td>
</tr>
<tr>
<td>Limit of detection</td>
<td>0.01 mg/litre by ion chromatography; 0.1 mg/litre by ion-selective electrodes or the SPADNS (sulfo phenyl azo dihydroxy naphthalene disulfonic acid) colorimetric method</td>
</tr>
<tr>
<td>Treatment achievability</td>
<td>1 mg/litre should be achievable using activated alumina (not a “conventional” treatment process, but relatively simple to install filters)</td>
</tr>
</tbody>
</table>
| Additional comments | • A management guidance document on fluoride is available.
• In setting national standards for fluoride or in evaluating the possible health consequences of exposure to fluoride, it is essential to consider the intake of water by the population of interest and the intake of fluoride from other sources (e.g., from food, air and dental preparations); Where the intakes from other sources are likely to approach, or be greater than, 6 mg/day, it would be appropriate to consider setting standards at a lower concentration than the guideline value.
• In areas with high natural fluoride levels in drinking-water, the guideline value may be difficult to achieve, in some circumstances, with the treatment technology available. |

Toxicological review

Many epidemiological studies of possible adverse effects of the long-term ingestion of fluoride via drinking-water have been carried out. These studies clearly establish that fluoride primarily produces effects on skeletal tissues (bones and teeth). In many regions with high fluoride exposure, fluoride is a significant cause of morbidity. Low concentrations provide protection against dental caries, especially in children. The pre- and post-eruptive protective effects of fluoride (involving the incorporation of fluoride into the matrix of the tooth during its formation, the development of shallower tooth grooves, which are consequently less prone to decay, and surface contact with enamel) increase with fluoride concentration up to about 2 mg/litre of drinking-water; the minimum concentration of fluoride in drinking-water required to produce it is approximately 0.5 mg/litre. However, fluoride can also have an adverse effect on tooth enamel and may give rise to mild dental fluorosis at drinking-water concentrations between 0.9 and 1.2 mg/litre, depending on intake. Elevated fluoride intakes can also have more serious effects on skeletal tissues. It has been concluded that there is
a clear excess risk of adverse skeletal effects for a total intake of 14 mg/day and suggestive evidence of an increased risk of effects on the skeleton at total fluoride intakes above about 6 mg/day.

History of guideline development
The 1958 and 1963 WHO International Standards for Drinking-water referred to fluoride, stating that concentrations in drinking-water in excess of 1.0–1.5 mg of fluoride per litre may give rise to dental fluorosis in some children, and much higher concentrations may eventually result in skeletal damage in both children and adults. To prevent the development of dental caries in children, a number of communal water supplies are fluoridated to bring the fluoride concentration to 1.0 mg/litre. The 1971 International Standards recommended control limits for fluorides in drinking-water for various ranges of the annual average of maximum daily air temperatures; control limits ranged from 0.6–0.8 mg/litre for temperatures of 26.3–32.6 °C to 0.9–1.7 mg/litre for temperatures of 10–12 °C. In the first edition of the Guidelines for Drinking-water Quality, published in 1984, a guideline value of 1.5 mg/litre was established for fluoride, as mottling of teeth has been reported very occasionally at higher levels. It was also noted that local application of the guideline value must take into account climatic conditions and higher levels of water intake. The 1993 Guidelines concluded that there was no evidence to suggest that the guideline value of 1.5 mg/litre set in 1984 needed to be revised. It was also recognized that in areas with high natural fluoride levels, the guideline value may be difficult to achieve in some circumstances with the treatment technology available. It was also emphasized that in setting national standards for fluoride, it is particularly important to consider climatic conditions, volume of water intake and intake of fluoride from other sources.

Assessment date
The risk assessment was conducted in 2003.

Principal references

12.64 Formaldehyde
Formaldehyde occurs in industrial effluents and is emitted into air from plastic materials and resin glues. Formaldehyde in drinking-water results primarily from the oxidation of natural organic matter during ozonation and chlorination. It is also found in drinking-water as a result of release from polyacetal plastic fittings.