12. CHEMICAL FACT SHEETS

Assessment date
The risk assessment was conducted in 2003.

Principal reference

12.73 Iodine
Iodine occurs naturally in water in the form of iodide. Traces of iodine are produced by oxidation of iodide during water treatment. Iodine is occasionally used for water disinfection in the field or in emergency situations.

Iodine is an essential element for the synthesis of thyroid hormones. Estimates of the dietary requirement for adult humans range from 80 to 150 µg/day; in many parts of the world, there are dietary deficiencies in iodine. In 1988, JECFA set a PMTDI for iodine of 1 mg/day (17 µg/kg of body weight per day) from all sources, based primarily on data on the effects of iodide. However, recent data from studies in rats indicate that the effects of iodine in drinking-water on thyroid hormone concentrations in the blood differ from those of iodide.

Available data therefore suggest that derivation of a guideline value for iodine on the basis of information on the effects of iodide is inappropriate, and there are few relevant data on the effects of iodine. Because iodine is not recommended for long-term disinfection, lifetime exposure to iodine concentrations such as might occur from water disinfection is unlikely. For these reasons, a guideline value for iodine has not been established at this time. There is, however, a need for guidance concerning the use of iodine as a disinfectant in emergency situations and for travellers.

History of guideline development
The 1958, 1963 and 1971 WHO International Standards for Drinking-water and the first edition of the Guidelines for Drinking-water Quality, published in 1984, did not refer to iodine. The 1993 Guidelines did not establish a guideline value for iodine because available data suggest that derivation of a guideline value for iodine on the basis of information on the effects of iodide is inappropriate and there are few relevant data on the effects of iodine; also, because iodine is not recommended for long-term disinfection, lifetime exposure to iodine concentrations such as might occur from water disinfection is unlikely.

Assessment date
The risk assessment was originally conducted in 1993. The Final Task Force Meeting in 2003 agreed that this risk assessment be brought forward to this edition of the Guidelines for Drinking-water Quality.
12.74 Iron

Iron is one of the most abundant metals in the Earth’s crust. It is found in natural fresh waters at levels ranging from 0.5 to 50 mg/litre. Iron may also be present in drinking-water as a result of the use of iron coagulants or the corrosion of steel and cast iron pipes during water distribution.

Iron is an essential element in human nutrition. Estimates of the minimum daily requirement for iron depend on age, sex, physiological status and iron bioavailability and range from about 10 to 50 mg/day.

As a precaution against storage in the body of excessive iron, in 1983 JECFA established a PMTDI of 0.8 mg/kg of body weight, which applies to iron from all sources except for iron oxides used as colouring agents and iron supplements taken during pregnancy and lactation or for specific clinical requirements. An allocation of 10% of this PMTDI to drinking-water gives a value of about 2 mg/litre, which does not present a hazard to health. The taste and appearance of drinking-water will usually be affected below this level (see chapter 10).

No guideline value for iron in drinking-water is proposed.

History of guideline development

The 1958 WHO International Standards for Drinking-water suggested that concentrations of iron greater than 1.0 mg/litre would markedly impair the potability of the water. The 1963 and 1971 International Standards retained this value as a maximum allowable or permissible concentration. In the first edition of the Guidelines for Drinking-water Quality, published in 1984, a guideline value of 0.3 mg/litre was established, as a compromise between iron’s use in water treatment and aesthetic considerations. No health-based guideline value for iron in drinking-water was proposed in the 1993 Guidelines, but it was mentioned that a value of about 2 mg/litre can be derived from the PMTDI established in 1983 by JECFA as a precaution against storage in the body of excessive iron. Iron stains laundry and plumbing fixtures at levels above 0.3 mg/litre; there is usually no noticeable taste at iron concentrations below 0.3 mg/litre, and concentrations of 1–3 mg/litre can be acceptable for people drinking anaerobic well water.

Assessment date

The risk assessment was originally conducted in 1993. The Final Task Force Meeting in 2003 agreed that this risk assessment be brought forward to this edition of the Guidelines for Drinking-water Quality.