activation only. In \textit{in vitro} as well as in \textit{in vivo} studies, chromosomal aberrations have been observed, mostly at high doses of styrene. The reactive intermediate styrene-7,8-oxide is a direct-acting mutagen. In long-term studies, orally administered styrene increased the incidence of lung tumours in mice at high dose levels but had no carcinogenic effect in rats. Styrene-7,8-oxide was carcinogenic in rats after oral administration. IARC has classified styrene in Group 2B. The available data suggest that the carcinogenicity of styrene is due to overloading of the detoxification mechanism for styrene-7,8-oxide (e.g., glutathione depletion).

\textbf{History of guideline development}

The 1958, 1963 and 1971 WHO \textit{International Standards for Drinking-water} and the first edition of the \textit{Guidelines for Drinking-water Quality}, published in 1984, did not refer to styrene. The 1993 Guidelines established a health-based guideline value of 0.02 mg/litre for styrene, noting that styrene may affect the acceptability of drinking-water at this concentration.

\textbf{Assessment date}

The risk assessment was originally conducted in 1993. The Final Task Force Meeting in 2003 agreed that this risk assessment be brought forward to this edition of the \textit{Guidelines for Drinking-water Quality}.

\textbf{Principal reference}

\section*{12.110 Sulfate}

Sulfates occur naturally in numerous minerals and are used commercially, principally in the chemical industry. They are discharged into water in industrial wastes and through atmospheric deposition; however, the highest levels usually occur in ground-water and are from natural sources. In general, the average daily intake of sulfate from drinking-water, air and food is approximately 500 mg, food being the major source. However, in areas with drinking-water supplies containing high levels of sulfate, drinking-water may constitute the principal source of intake.

The existing data do not identify a level of sulfate in drinking-water that is likely to cause adverse human health effects. The data from a liquid diet piglet study and from tap water studies with human volunteers indicate a laxative effect at concentrations of 1000–1200 mg/litre but no increase in diarrhoea, dehydration or weight loss.

No health-based guideline is proposed for sulfate. However, because of the gastrointestinal effects resulting from ingestion of drinking-water containing high sulfate levels, it is recommended that health authorities be notified of sources of drinking-water that contain sulfate concentrations in excess of 500 mg/litre. The presence of
sulfate in drinking-water may also cause noticeable taste (see chapter 10) and may contribute to the corrosion of distribution systems.

History of guideline development
The 1958 WHO *International Standards for Drinking-water* suggested that concentrations of sulfate greater than 400 mg/litre would markedly impair the potability of the water. The 1963 and 1971 International Standards retained this value as a maximum allowable or permissible concentration. The first two editions of the International Standards also suggested that concentrations of magnesium plus sodium sulfate in excess of 1000 mg/litre would markedly impair drinking-water potability. In the first edition of the *Guidelines for Drinking-water Quality*, published in 1984, a guideline value of 400 mg/litre for sulfate was established, based on taste considerations. No health-based guideline value for sulfate was proposed in the 1993 Guidelines. However, because of the gastrointestinal effects resulting from ingestion of drinking-water containing high sulfate levels, it was recommended that health authorities be notified of sources of drinking-water that contain sulfate concentrations in excess of 500 mg/litre. The presence of sulfate in drinking-water may also cause noticeable taste at concentrations above 250 mg/litre and may contribute to the corrosion of distribution systems.

Assessment date
The risk assessment was conducted in 2003.

Principal reference

12.111 2,4,5-T (2,4,5-Trichlorophenoxyacetic acid)
The half-lives for degradation of chlorophenoxy herbicides, including 2,4,5-T (CAS No. 93-76-5), in the environment are in the order of several days. Chlorophenoxy herbicides are not often found in food.

<table>
<thead>
<tr>
<th>Guideline value</th>
<th>0.009 mg/litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurrence</td>
<td>Chlorophenoxy herbicides not frequently found in drinking-water; when detected, concentrations are usually no greater than a few micrograms per litre</td>
</tr>
<tr>
<td>TDI</td>
<td>3 μg/kg of body weight, based on a NOAEL of 3 mg/kg of body weight for reduced body weight gain, increased liver and kidney weights and renal toxicity in a 2-year study in rats, with an uncertainty factor of 1000 (100 for inter- and intraspecies variation and 10 to take into consideration the suggested association between 2,4,5-T and soft tissue sarcoma and non-Hodgkin lymphoma in epidemiological studies)</td>
</tr>
</tbody>
</table>