Guidelines for Drinking-water Quality

THIRD EDITION

Volume 1
Recommendations

WORLD HEALTH ORGANIZATION
Geneva
2004
Contents

Preface xv
Acknowledgements xviii
Acronyms and abbreviations used in text xx

1. Introduction 1
 1.16 General considerations and principles 1
 1.1.1 Microbial aspects 3
 1.1.2 Disinfection 5
 1.1.3 Chemical aspects 6
 1.1.4 Radiological aspects 7
 1.1.5 Acceptability aspects 7
 1.2 Roles and responsibilities in drinking-water safety management 8
 1.2.1 Surveillance and quality control 8
 1.2.2 Public health authorities 10
 1.2.3 Local authorities 11
 1.2.4 Water resource management 12
 1.2.5 Drinking-water supply agencies 13
 1.2.6 Community management 14
 1.2.7 Water vendors 15
 1.2.8 Individual consumers 15
 1.2.9 Certification agencies 16
 1.2.10 Plumbing 17
 1.3 Supporting documentation to the Guidelines 18

2. The Guidelines: a framework for safe drinking-water 22
 2.1 Framework for safe drinking-water: requirements 22
 2.1.1 Health-based targets 24
 2.1.2 System assessment and design 25
 2.1.3 Operational monitoring 26
 2.1.4 Management plans, documentation and communication 27
 2.1.5 Surveillance of drinking-water quality 28
2.2 Guidelines for verification
 2.2.1 Microbial water quality
 2.2.2 Chemical water quality

2.3 National drinking-water policy
 2.3.1 Laws, regulations and standards
 2.3.2 Setting national standards

2.4 Identifying priority drinking-water quality concerns
 2.4.1 Assessing microbial priorities
 2.4.2 Assessing chemical priorities

3. Health-based targets
 3.1 Role and purpose of health-based targets
 3.2 Types of health-based targets
 3.2.1 Specified technology targets
 3.2.2 Performance targets
 3.2.3 Water quality targets
 3.2.4 Health outcome targets
 3.3 General considerations in establishing health-based targets
 3.3.1 Assessment of risk in the framework for safe drinking-water
 3.3.2 Reference level of risk
 3.3.3 Disability-adjusted life-years (DALYs)

4. Water safety plans
 4.1 System assessment and design
 4.1.1 New systems
 4.1.2 Collecting and evaluating available data
 4.1.3 Resource and source protection
 4.1.4 Treatment
 4.1.5 Piped distribution systems
 4.1.6 Non-piped, community and household systems
 4.1.7 Validation
 4.1.8 Upgrade and improvement
 4.2 Operational monitoring and maintaining control
 4.2.1 Determining system control measures
 4.2.2 Selecting operational monitoring parameters
 4.2.3 Establishing operational and critical limits
 4.2.4 Non-piped, community and household systems
 4.3 Verification
 4.3.1 Verification of microbial quality
 4.3.2 Verification of chemical quality
 4.3.3 Water sources
 4.3.4 Piped distribution systems
CONTENTS

4.3.5 Verification for community-managed supplies 74
4.3.6 Quality assurance and quality control 75
4.4 Management procedures for piped distribution systems 76
 4.4.1 Predictable incidents (“deviations”) 77
 4.4.2 Unforeseen events 77
 4.4.3 Emergencies 78
 4.4.4 Closing supply, water avoidance and “boil water” orders 79
 4.4.5 Preparing a monitoring plan 80
 4.4.6 Supporting programmes 80
4.5 Management of community and household water supplies 81
4.6 Documentation and communication 82

5. Surveillance 84
 5.1 Types of approaches 85
 5.1.1 Audit 86
 5.1.2 Direct assessment 87
 5.2 Adapting approaches to specific circumstances 88
 5.2.1 Urban areas in developing countries 88
 5.2.2 Surveillance of community drinking-water supplies 88
 5.2.3 Surveillance of household treatment and storage systems 89
 5.3 Adequacy of supply 90
 5.3.1 Quantity (service level) 90
 5.3.2 Accessibility 91
 5.3.3 Affordability 92
 5.3.4 Continuity 92
 5.4 Planning and implementation 93
 5.5 Reporting and communicating 95
 5.5.1 Interaction with community and consumers 96
 5.5.2 Regional use of data 96

6. Application of the guidelines in specific circumstances 99
 6.1 Large buildings 99
 6.1.1 Health risk assessment 100
 6.1.2 System assessment 100
 6.1.3 Management 101
 6.1.4 Monitoring 101
 6.1.5 Independent surveillance and supporting programmes 102
 6.1.6 Drinking-water quality in health care facilities 102
 6.1.7 Drinking-water quality in schools and day care centres 103
 6.2 Emergencies and disasters 104
 6.2.1 Practical considerations 105
 6.2.2 Monitoring 106
 6.2.3 Microbial guidelines 107
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.4</td>
<td>Sanitary inspections and catchment mapping</td>
<td>108</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Chemical and radiological guidelines</td>
<td>108</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Testing kits and laboratories</td>
<td>109</td>
</tr>
<tr>
<td>6.3</td>
<td>Safe drinking-water for travellers</td>
<td>109</td>
</tr>
<tr>
<td>6.4</td>
<td>Desalination systems</td>
<td>111</td>
</tr>
<tr>
<td>6.5</td>
<td>Packaged drinking-water</td>
<td>113</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Safety of packaged drinking-water</td>
<td>113</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Potential health benefits of bottled drinking-water</td>
<td>114</td>
</tr>
<tr>
<td>6.5.3</td>
<td>International standards for bottled drinking-water</td>
<td>114</td>
</tr>
<tr>
<td>6.6</td>
<td>Food production and processing</td>
<td>115</td>
</tr>
<tr>
<td>6.7</td>
<td>Aircraft and airports</td>
<td>116</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Health risks</td>
<td>116</td>
</tr>
<tr>
<td>6.7.2</td>
<td>System risk assessment</td>
<td>116</td>
</tr>
<tr>
<td>6.7.3</td>
<td>Operational monitoring</td>
<td>116</td>
</tr>
<tr>
<td>6.7.4</td>
<td>Management</td>
<td>117</td>
</tr>
<tr>
<td>6.7.5</td>
<td>Surveillance</td>
<td>117</td>
</tr>
<tr>
<td>6.8</td>
<td>Ships</td>
<td>117</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Health risks</td>
<td>117</td>
</tr>
<tr>
<td>6.8.2</td>
<td>System risk assessment</td>
<td>118</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Operational monitoring</td>
<td>119</td>
</tr>
<tr>
<td>6.8.4</td>
<td>Management</td>
<td>119</td>
</tr>
<tr>
<td>6.8.5</td>
<td>Surveillance</td>
<td>120</td>
</tr>
<tr>
<td>7.1</td>
<td>Microbial hazards associated with drinking-water</td>
<td>121</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Waterborne infections</td>
<td>121</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Persistence and growth in water</td>
<td>124</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Public health aspects</td>
<td>125</td>
</tr>
<tr>
<td>7.2</td>
<td>Health-based target setting</td>
<td>126</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Health-based targets applied to microbial hazards</td>
<td>126</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Risk assessment approach</td>
<td>126</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Risk-based performance target setting</td>
<td>131</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Presenting the outcome of performance target development</td>
<td>133</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Issues in adapting risk-based performance target setting to national/local circumstances</td>
<td>133</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Health outcome targets</td>
<td>134</td>
</tr>
<tr>
<td>7.3</td>
<td>Occurrence and treatment of pathogens</td>
<td>135</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Occurrence</td>
<td>136</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Treatment</td>
<td>137</td>
</tr>
<tr>
<td>7.4</td>
<td>Verification of microbial safety and quality</td>
<td>142</td>
</tr>
<tr>
<td>7.5</td>
<td>Methods of detection of faecal indicator bacteria</td>
<td>143</td>
</tr>
</tbody>
</table>
8. Chemical aspects

8.1 Chemical hazards in drinking-water

8.2 Derivation of chemical guideline values

8.2.1 Approaches taken

8.2.2 Threshold chemicals

8.2.3 Alternative approaches

8.2.4 Non-threshold chemicals

8.2.5 Data quality

8.2.6 Provisional guideline values

8.2.7 Chemicals with effects on acceptability

8.2.8 Non-guideline chemicals

8.2.9 Mixtures

8.3 Analytical aspects

8.3.1 Analytical achievability

8.3.2 Analytical methods

8.4 Treatment

8.4.1 Treatment achievability

8.4.2 Chlorination

8.4.3 Ozonation

8.4.4 Other disinfection processes

8.4.5 Filtration

8.4.6 Aeration

8.4.7 Chemical coagulation

8.4.8 Activated carbon adsorption

8.4.9 Ion exchange

8.4.10 Membrane processes

8.4.11 Other treatment processes

8.4.12 Disinfection by-products – process control measures

8.4.13 Treatment for corrosion control

8.5 Guideline values for individual chemicals, by source category

8.5.1 Naturally occurring chemicals

8.5.2 Chemicals from industrial sources and human dwellings

8.5.3 Chemicals from agricultural activities

8.5.4 Chemicals used in water treatment or from materials in contact with drinking-water

8.5.5 Pesticides used in water for public health purposes

8.5.6 Cyanobacterial toxins

9. Radiological aspects

9.1 Sources and health effects of radiation exposure

9.1.1 Radiation exposure through drinking-water

9.1.2 Radiation-induced health effects through drinking-water
GUIDELINES FOR DRINKING-WATER QUALITY

9.2 Units of radioactivity and radiation dose 201
9.3 Guidance levels for radionuclides in drinking-water 202
9.4 Monitoring and assessment for dissolved radionuclides 204
 9.4.1 Screening of drinking-water supplies 204
 9.4.2 Strategy for assessing drinking-water 205
 9.4.3 Remedial measures 205
9.5 Radon 206
 9.5.1 Radon in air and water 206
 9.5.2 Risk 207
 9.5.3 Guidance on radon in drinking-water supplies 207
9.6 Sampling, analysis and reporting 207
 9.6.1 Measuring gross alpha and gross beta activity concentrations 207
 9.6.2 Measuring potassium-40 208
 9.6.3 Measuring radon 208
 9.6.4 Sampling 209
 9.6.5 Reporting of results 209

10. Acceptability aspects 210
 10.1 Taste, odour and appearance 211
 10.1.1 Biologically derived contaminants 211
 10.1.2 Chemically derived contaminants 213
 10.1.3 Treatment of taste, odour and appearance problems 219
 10.2 Temperature 220

11. Microbial fact sheets 221
 11.1 Bacterial pathogens 222
 11.1.1 Acinetobacter 222
 11.1.2 Aeromonas 224
 11.1.3 Bacillus 225
 11.1.4 Burkholderia pseudomallei 226
 11.1.5 Campylobacter 228
 11.1.6 Escherichia coli pathogenic strains 229
 11.1.7 Helicobacter pylori 231
 11.1.8 Klebsiella 232
 11.1.9 Legionella 233
 11.1.10 Mycobacterium 235
 11.1.11 Pseudomonas aeruginosa 237
 11.1.12 Salmonella 239
 11.1.13 Shigella 240
 11.1.14 Staphylococcus aureus 242
 11.1.15 Tsukamurella 243
CONTENTS

11.1.16 *Vibrio* 244
11.1.17 *Yersinia* 246

11.2 Viral pathogens 247
11.2.1 Adenoviruses 248
11.2.2 Astroviruses 250
11.2.3 Caliciviruses 251
11.2.4 Enteroviruses 253
11.2.5 Hepatitis A virus 254
11.2.6 Hepatitis E virus 256
11.2.7 Rotaviruses and orthoreoviruses 257

11.3 Protozoan pathogens 259
11.3.1 *Acanthamoeba* 259
11.3.2 *Balantidium coli* 261
11.3.3 *Cryptosporidium* 262
11.3.4 *Cyclospora cayetanensis* 264
11.3.5 *Entamoeba histolytica* 265
11.3.6 *Giardia intestinalis* 267
11.3.7 *Isospora belli* 268
11.3.8 Microsporidia 270
11.3.9 *Naegleria fowleri* 272
11.3.10 *Toxoplasma gondii* 274

11.4 Helminth pathogens 275
11.4.1 *Dracunculus medinensis* 276
11.4.2 *Fasciola* spp. 278

11.5 Toxic cyanobacteria 279

11.6 Indicator and index organisms 281
11.6.1 Total coliform bacteria 282
11.6.2 *Escherichia coli* and thermotolerant coliform bacteria 284
11.6.3 Heterotrophic plate counts 285
11.6.4 Intestinal enterococci 287
11.6.5 *Clostridium perfringens* 288
11.6.6 Coliphages 289
11.6.7 *Bacteroides fragilis* phages 292
11.6.8 Enteric viruses 294

12. Chemical fact sheets 296
12.1 Acrylamide 296
12.2 Alachlor 297
12.3 Aldicarb 298
12.4 Aldrin and dieldrin 300
12.5 Aluminium 301
12.6 Ammonia 303
GUIDELINES FOR DRINKING-WATER QUALITY

12.7 Antimony 304
12.8 Arsenic 306
12.9 Asbestos 308
12.10 Atrazine 308
12.11 Barium 310
12.12 Bentazone 311
12.13 Benzene 312
12.14 Boron 313
12.15 Bromate 315
12.16 Brominated acetic acids 316
12.17 Cadmium 317
12.18 Carbofuran 319
12.19 Carbon tetrachloride 320
12.20 Chloral hydrate (trichloroacetaldehyde) 321
12.21 Chlordane 323
12.22 Chloride 324
12.23 Chlorine 325
12.24 Chlorite and chlorate 326
12.25 Chloracetones 329
12.26 Chlorophenols (2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol) 329
12.27 Chloropicrin 331
12.28 Chlorotoluron 332
12.29 Chlorpyrifos 333
12.30 Chromium 334
12.31 Copper 335
12.32 Cyanazine 337
12.33 Cyanide 339
12.34 Cyanogen chloride 340
12.35 2,4-D (2,4-dichlorophenoxyacetic acid) 340
12.36 2,4-DB 342
12.37 DDT and metabolites 343
12.38 Dialkyltins 345
12.39 1,2-Dibromo-3-chloropropane (DBCP) 346
12.40 1,2-Dibromoethane (ethylene dibromide) 347
12.41 Dichloroacetic acid 349
12.42 Dichlorobenzenes (1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene) 350
12.43 1,1-Dichloroethane 352
12.44 1,2-Dichloroethane 353
12.45 1,1-Dichloroethene 354
12.46 1,2-Dichloroethene 355
12.47 Dichloromethane 357
12.48 1,2-Dichloropropane (1,2-DCP) 358
12.49 1,3-Dichloropropane 359
12.50 1,3-Dichloropropene 360
12.51 Dichlorprop (2,4-DP) 361
12.52 Di(2-ethylhexyl)adipate 362
12.53 Di(2-ethylhexyl)phthlate 363
12.54 Dimethoate 364
12.55 Diquat 366
12.56 Edetic acid (EDTA) 367
12.57 Endosulfan 368
12.58 Endrin 369
12.59 Epichlorohydrin 370
12.60 Ethylbenzene 372
12.61 Fenitrothion 373
12.62 Fenoprop (2,4,5-TP; 2,4,5-trichlorophenoxy propionic acid) 374
12.63 Fluoride 375
12.64 Formaldehyde 377
12.65 Glyphosate and AMPA 379
12.66 Halogenated acetonitriles (dichloroacetonitrile, bromoacetonitrile, bromochloroacetonitrile, trichloroacetonitrile) 380
12.67 Hardness 382
12.68 Heptachlor and heptachlor epoxide 383
12.69 Hexachlorobenzene (HCB) 385
12.70 Hexachlorobutadiene (HCBD) 386
12.71 Hydrogen sulfide 387
12.72 Inorganic tin 388
12.73 Iodine 389
12.74 Iron 390
12.75 Isoproturon 391
12.76 Lead 392
12.77 Lindane 394
12.78 Malathion 396
12.79 Manganese 397
12.80 MCPA [4-(2-methyl-4-chlorophenoxy)acetic acid] 399
12.81 Mecoprop (MCPP; [2-(2-methyl-chlorophenoxy) propionic acid]) 401
12.82 Mercury 402
12.83 Methoxychlor 403
12.84 Methyl parathion 404
12.85 Metolachlor 405
12.86 Microcystin-LR 407
12.87 Molinate 408
12.88 Molybdenum 410
12.89 Monochloramine 411
12.90 Monochloroacetic acid 412
12.91 Monochlorobenzene 413
12.92 MX 414
12.93 Nickel 415
12.94 Nitrate and nitrite 417
12.95 Nitrilotriacetic acid (NTA) 420
12.96 Parathion 421
12.97 Pendimethalin 422
12.98 Pentachlorophenol (PCP) 424
12.99 Permethrin 425
12.100 pH 426
12.101 2-Phenylphenol and its sodium salt 427
12.102 Polynuclear aromatic hydrocarbons (PAHs) 428
12.103 Propanil 430
12.104 Pyriproxyfen 431
12.105 Selenium 432
12.106 Silver 434
12.107 Simazine 435
12.108 Sodium 436
12.109 Styrene 437
12.110 Sulfate 438
12.111 2,4,5-T (2,4,5-Trichlorophenoxyacetic acid) 439
12.112 Terbuthylazine (TBA) 440
12.113 Tetrachloroethene 442
12.114 Toluene 443
12.115 Total dissolved solids (TDS) 444
12.116 Trichloroacetic acid 445
12.117 Trichlorobenzenes (total) 446
12.118 1,1,1-Trichloroethane 447
12.119 Trichloroethene 448
12.120 Trifluralin 450
12.121 Trihalomethanes (bromoform, bromodichloromethane, dibromochloromethane, chloroform) 451
12.122 Uranium 454
12.123 Vinyl chloride 456
12.124 Xylenes 458
12.125 Zinc 459
<table>
<thead>
<tr>
<th>Annex 1</th>
<th>Bibliography</th>
<th>461</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annex 2</td>
<td>Contributors to the development of the Third Edition of the Guidelines for Drinking-water Quality</td>
<td>467</td>
</tr>
<tr>
<td>Annex 3</td>
<td>Default assumptions</td>
<td>486</td>
</tr>
<tr>
<td>Annex 4</td>
<td>Chemical summary tables</td>
<td>488</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>494</td>
</tr>
</tbody>
</table>
Access to safe drinking-water is essential to health, a basic human right and a component of effective policy for health protection.

The importance of water, sanitation and hygiene for health and development has been reflected in the outcomes of a series of international policy forums. These have included health-oriented conferences such as the International Conference on Primary Health Care, held in Alma-Ata, Kazakhstan (former Soviet Union), in 1978. They have also included water-oriented conferences such as the 1977 World Water Conference in Mar del Plata, Argentina, which launched the water supply and sanitation decade of 1981–1990, as well as the Millennium Declaration goals adopted by the General Assembly of the United Nations (UN) in 2000 and the outcome of the Johannesburg World Summit for Sustainable Development in 2002. Most recently, the UN General Assembly declared the period from 2005 to 2015 as the International Decade for Action, “Water for Life.”

Access to safe drinking-water is important as a health and development issue at a national, regional and local level. In some regions, it has been shown that investments in water supply and sanitation can yield a net economic benefit, since the reductions in adverse health effects and health care costs outweigh the costs of undertaking the interventions. This is true for major water supply infrastructure investments through to water treatment in the home. Experience has also shown that interventions in improving access to safe water favour the poor in particular, whether in rural or urban areas, and can be an effective part of poverty alleviation strategies.

In 1983–1984 and in 1993–1997, the World Health Organization (WHO) published the first and second editions of the Guidelines for Drinking-water Quality in three volumes as successors to previous WHO International Standards. In 1995, the decision was made to pursue the further development of the Guidelines through a process of rolling revision. This led to the publication of addenda to the second edition of the Guidelines, on chemical and microbial aspects, in 1998, 1999 and 2002; the publication of a text on Toxic Cyanobacteria in Water; and the preparation of expert reviews on key issues preparatory to the development of a third edition of the Guidelines.
In 2000, a detailed plan of work was agreed upon for development of the third edition of the Guidelines. As with previous editions, this work was shared between WHO Headquarters and the WHO Regional Office for Europe (EURO). Leading the process of the development of the third edition were the Programme on Water Sanitation and Health within Headquarters and the European Centre for Environment and Health, Rome, within EURO. Within WHO Headquarters, the Programme on Chemical Safety provided inputs on some chemical hazards, and the Programme on Radiological Safety contributed to the section dealing with radiological aspects. All six WHO Regional Offices participated in the process.

This revised Volume 1 of the Guidelines is accompanied by a series of publications providing information on the assessment and management of risks associated with microbial hazards and by internationally peer-reviewed risk assessments for specific chemicals. These replace the corresponding parts of the previous Volume 2. Volume 3 provides guidance on good practice in surveillance, monitoring and assessment of drinking-water quality in community supplies. The Guidelines are also accompanied by other publications explaining the scientific basis of their development and providing guidance on good practice in implementation.

This volume of the Guidelines for Drinking-water Quality explains requirements to ensure drinking-water safety, including minimum procedures and specific guideline values, and how those requirements are intended to be used. The volume also describes the approaches used in deriving the guidelines, including guideline values. It includes fact sheets on significant microbial and chemical hazards. The development of this third edition of the Guidelines for Drinking-water Quality includes a substantive revision of approaches to ensuring microbial safety. This takes account of important developments in microbial risk assessment and its linkages to risk management. The development of this orientation and content was led over an extended period by Dr Arie Havelaar (RIVM, Netherlands) and Dr Jamie Bartram (WHO).

Since the second edition of WHO’s Guidelines for Drinking-water Quality, there have been a number of events that have highlighted the importance and furthered understanding of various aspects of drinking-water quality and health. These are reflected in this third edition of the Guidelines.

These Guidelines supersede those in previous editions (1983–1984, 1993–1997 and addenda in 1998, 1999 and 2002) and previous International Standards (1958, 1963 and 1971). The Guidelines are recognized as representing the position of the UN system on issues of drinking-water quality and health by “UN-Water,” the body that coordinates amongst the 24 UN agencies and programmes concerned with water issues. This edition of the Guidelines further develops concepts, approaches and information in previous editions:

- Experience has shown that microbial hazards continue to be the primary concern in both developing and developed countries. Experience has also shown the value of a systematic approach towards securing microbial safety. This edition includes
significantly expanded guidance on ensuring microbial safety of drinking-water, building on principles – such as the multiple-barrier approach and the importance of source protection – considered in previous editions. The Guidelines are accompanied by documentation describing approaches towards fulfilling requirements for microbial safety and providing guidance to good practice in ensuring that safety is achieved.

- Information on many chemicals has been revised. This includes information on chemicals not considered previously; revisions to take account of new scientific information; and, in some cases, lesser coverage where new information suggests a lesser priority.
- Experience has also shown the necessity of recognizing the important roles of many different stakeholders in ensuring drinking-water safety. This edition includes discussion of the roles and responsibilities of key stakeholders in ensuring drinking-water safety.
- The need for different tools and approaches in supporting safe management of large piped supplies versus small community supplies remains relevant, and this edition describes the principal characteristics of the different approaches.
- There has been increasing recognition that only a few key chemicals cause large-scale health effects through drinking-water exposure. These include fluoride and arsenic. Other chemicals, such as lead, selenium and uranium, may also be significant under certain conditions. Interest in chemical hazards in drinking-water was highlighted by recognition of the scale of arsenic exposure through drinking-water in Bangladesh and elsewhere. The revised Guidelines and associated publications provide guidance on identifying local priorities and on management of the chemicals associated with large-scale effects.
- WHO is frequently approached for guidance on the application of the *Guidelines for Drinking-water Quality* to situations other than community supplies or managed utilities. This revised edition includes information on application of the Guidelines to several specific circumstances and is accompanied by texts dealing with some of these in greater detail.

The *Guidelines for Drinking-water Quality* are kept up to date through a process of rolling revision, which leads to periodic release of documents that may add to or supersede information in this volume.

The Guidelines are addressed primarily to water and health regulators, policymakers and their advisors, to assist in the development of national standards. The Guidelines and associated documents are also used by many others as a source of information on water quality and health and on effective management approaches.
Acknowledgements

The preparation of the current edition of the Guidelines for Drinking-water Quality and supporting documentation covered a period of eight years and involved the participation of over 490 experts from 90 developing and developed countries. The contributions of all who participated in the preparation and finalization of the Guidelines for Drinking-water Quality, including those individuals listed in Annex 2, are gratefully acknowledged.

The work of the following Working Groups was crucial to the development of the third edition of the Guidelines for Drinking-water Quality:

Microbial aspects working group
Ms T. Boonyakarnkul, Department of Health, Thailand (*Surveillance and control*)
Dr D. Cunliffe, SA Department of Human Services, Australia (*Public health*)
Prof. W. Grabow, University of Pretoria, South Africa (*Pathogen-specific information*)
Dr A. Havelaar, RIVM, The Netherlands (*Working Group coordinator; Risk assessment*)
Prof. M. Sobsey, University of North Carolina, USA (*Risk management*)

Chemical aspects working group
Mr J.K. Fawell, United Kingdom (*Organic and inorganic constituents*)
Ms M. Giddings, Health Canada (*Disinfectants and disinfection by-products*)
Prof. Y. Magara, Hokkaido University, Japan (*Analytical achievability*)
Dr E. Ohanian, EPA, USA (*Disinfectants and disinfection by-products*)
Dr P. Toft, Canada (*Pesticides*)

Protection and control working group
Dr I. Chorus, Umweltbundesamt, Germany (*Resource and source protection*)
Dr J. Cotruvo, USA (*Materials and additives*)
Dr G. Howard, DFID, Bangladesh, and formerly Loughborough University, United Kingdom (*Monitoring and assessment*)
Mr P. Jackson, WRc-NSF, United Kingdom (*Treatment achievability*)
ACKNOWLEDGEMENTS

The WHO coordinators were:
Dr J. Bartram, Coordinator, Programme on Water Sanitation and Health, WHO Headquarters, and formerly WHO European Centre for Environmental Health
Mr P. Callan, Programme on Water Sanitation and Health, WHO Headquarters, on secondment from National Health and Medical Research Council, Australia
Ms C. Vickers acted as a liaison between the Working Groups and the International Programme on Chemical Safety, WHO Headquarters.
Ms Marla Sheffer of Ottawa, Canada, was responsible for the editing of the Guidelines. Mr Hiroki Hashizume provided support to the work of the Chemical Aspects Working Group. Ms Mary-Ann Lundby, Ms Grazia Motturi and Ms Penny Ward provided secretarial and administrative support throughout the process and to individual meetings.

The preparation of these Guidelines would not have been possible without the generous support of the following, which is gratefully acknowledged: the Ministry of Health of Italy; the Ministry of Health, Labour and Welfare of Japan; the National Health and Medical Research Council, Australia; the Swedish International Development Cooperation Agency, Sweden and the United States Environmental Protection Agency.
Acronyms and abbreviations used in text

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>atomic absorption spectrometry</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer disease</td>
</tr>
<tr>
<td>ADI</td>
<td>acceptable daily intake</td>
</tr>
<tr>
<td>AES</td>
<td>atomic emission spectrometry</td>
</tr>
<tr>
<td>AIDS</td>
<td>acquired immunodeficiency syndrome</td>
</tr>
<tr>
<td>AMPA</td>
<td>aminomethylphosphonic acid</td>
</tr>
<tr>
<td>BaP</td>
<td>benzo[a]pyrene</td>
</tr>
<tr>
<td>BDCM</td>
<td>bromodichloromethane</td>
</tr>
<tr>
<td>BMD</td>
<td>benchmark dose</td>
</tr>
<tr>
<td>bw</td>
<td>body weight</td>
</tr>
<tr>
<td>CAC</td>
<td>Codex Alimentarius Commission</td>
</tr>
<tr>
<td>CAS</td>
<td>Chemical Abstracts Service</td>
</tr>
<tr>
<td>CIICAD</td>
<td>Concise International Chemical Assessment Document</td>
</tr>
<tr>
<td>CSAF</td>
<td>chemical-specific adjustment factor</td>
</tr>
<tr>
<td>Ct</td>
<td>product of disinfectant concentration and contact time</td>
</tr>
<tr>
<td>DAEC</td>
<td>diffusely adherent E. coli</td>
</tr>
<tr>
<td>DALY</td>
<td>disability-adjusted life-year</td>
</tr>
<tr>
<td>DBCM</td>
<td>dibromochloromethane</td>
</tr>
<tr>
<td>DBCP</td>
<td>1,2-dibromo-3-chloropropane</td>
</tr>
<tr>
<td>DBP</td>
<td>disinfection by-product</td>
</tr>
<tr>
<td>DCB</td>
<td>dichlorobenzene</td>
</tr>
<tr>
<td>DCP</td>
<td>dichloropropane</td>
</tr>
<tr>
<td>DDT</td>
<td>dichlorodiphenyltrichloroethane</td>
</tr>
<tr>
<td>DEHA</td>
<td>di(2-ethylhexyl) adipate</td>
</tr>
<tr>
<td>DEHP</td>
<td>di(2-ethylhexyl) phthalate</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>ACRONYMS AND ABBREVIATIONS USED IN TEXT</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>EAAS</td>
<td>electrothermal atomic absorption spectrometry</td>
</tr>
<tr>
<td>EAEC</td>
<td>enteroaggregative E. coli</td>
</tr>
<tr>
<td>EBCT</td>
<td>empty bed contact time</td>
</tr>
<tr>
<td>EC</td>
<td>electron capture</td>
</tr>
<tr>
<td>ECD</td>
<td>electron capture detector</td>
</tr>
<tr>
<td>EDTA</td>
<td>edetic acid; ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EHC</td>
<td>Environmental Health Criteria monograph</td>
</tr>
<tr>
<td>EHEC</td>
<td>enterohaemorrhagic E. coli</td>
</tr>
<tr>
<td>EIEC</td>
<td>enteroinvasive E. coli</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EPEC</td>
<td>enteropathogenic E. coli</td>
</tr>
<tr>
<td>ETEC</td>
<td>enterotoxigenic E. coli</td>
</tr>
<tr>
<td>EURO</td>
<td>WHO Regional Office for Europe</td>
</tr>
<tr>
<td>FAAS</td>
<td>flame atomic absorption spectrometry</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>FD</td>
<td>fluorescence detector</td>
</tr>
<tr>
<td>FID</td>
<td>flame ionization detector</td>
</tr>
<tr>
<td>FPD</td>
<td>flame photodiode detector</td>
</tr>
<tr>
<td>GAC</td>
<td>granular activated carbon</td>
</tr>
<tr>
<td>GAE</td>
<td>granulomatous amoebic encephalitis</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>GL</td>
<td>guidance level (used for radionuclides in drinking-water)</td>
</tr>
<tr>
<td>GV</td>
<td>guideline value</td>
</tr>
<tr>
<td>HACCP</td>
<td>hazard analysis and critical control points</td>
</tr>
<tr>
<td>HAd</td>
<td>human adenovirus</td>
</tr>
<tr>
<td>HAstV</td>
<td>human astrovirus</td>
</tr>
<tr>
<td>HAV</td>
<td>hepatitis A virus</td>
</tr>
<tr>
<td>Hb</td>
<td>haemoglobin</td>
</tr>
<tr>
<td>HCB</td>
<td>hexachlorobenzene</td>
</tr>
<tr>
<td>HCBD</td>
<td>hexachlorobutadiene</td>
</tr>
<tr>
<td>HCH</td>
<td>hexachlorocyclohexane</td>
</tr>
<tr>
<td>HEV</td>
<td>hepatitis E virus</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>HPC</td>
<td>heterotrophic plate count</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>HRV</td>
<td>human rotavirus</td>
</tr>
<tr>
<td>HuCV</td>
<td>human calicivirus</td>
</tr>
<tr>
<td>HUS</td>
<td>haemolytic uraemic syndrome</td>
</tr>
</tbody>
</table>
GUIDELINES FOR DRINKING-WATER QUALITY

IAEA International Atomic Energy Agency
IARC International Agency for Research on Cancer
IC ion chromatography
ICP inductively coupled plasma
ICRP International Commission on Radiological Protection
IDC individual dose criterion
IPCS International Programme on Chemical Safety
ISO International Organization for Standardization

JECFA Joint FAO/WHO Expert Committee on Food Additives
JMPR Joint FAO/WHO Meeting on Pesticide Residues

K_{ow} octanol/water partition coefficient

LI Langelier Index
LOAEL lowest-observed-adverse-effect level

MCB monochlorobenzene
MCPA 4-(2-methyl-4-chlorophenoxy)acetic acid
MCPP 2(2-methyl-chlorophenoxy) propionic acid; mecoprop
methHb methaemoglobin
MMT methylcyclopentadienyl manganese tricarbonyl
MS mass spectrometry
MX 3-chloro-4-dichloromethyl-5-hydroxy-2(5H)-furanone

NAS National Academy of Sciences (USA)
NOAEL no-observed-adverse-effect level
NOEL no-observed-effect level
NTA nitrilotriacetic acid
NTP National Toxicology Program (USA)
NTU nephelometric turbidity unit

P/A presence/absence
PAC powdered activated carbon
PAH polynuclear aromatic hydrocarbon
PAM primary amoebic meningocencephalitis
PCP pentachlorophenol
PCR polymerase chain reaction
PD photoionization detector
PMTDI provisional maximum tolerable daily intake
PT purge and trap
PTDI provisional tolerable daily intake
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTWI</td>
<td>provisional tolerable weekly intake</td>
</tr>
<tr>
<td>PVC</td>
<td>polyvinyl chloride</td>
</tr>
<tr>
<td>QMRA</td>
<td>quantitative microbial risk assessment</td>
</tr>
<tr>
<td>RDL</td>
<td>reference dose level</td>
</tr>
<tr>
<td>RIVM</td>
<td>Rijksinstituut voor Volksgezondheid en Milieu (Dutch National Institute of Public Health and Environmental Protection)</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>SI</td>
<td>Système international d’unités (International System of Units)</td>
</tr>
<tr>
<td>SOP</td>
<td>standard operating procedure</td>
</tr>
<tr>
<td>SPADNS</td>
<td>sulfo phenyl azo dihydroxy naphthalene disulfonic acid</td>
</tr>
<tr>
<td>TBA</td>
<td>terbuthylazine</td>
</tr>
<tr>
<td>TCB</td>
<td>trichlorobenzene</td>
</tr>
<tr>
<td>TCU</td>
<td>true colour unit</td>
</tr>
<tr>
<td>TD₅₀</td>
<td>tumorigenic dose₅₀, the intake or exposure associated with a 5% excess incidence of tumours in experimental studies in animals</td>
</tr>
<tr>
<td>TDI</td>
<td>tolerable daily intake</td>
</tr>
<tr>
<td>TDS</td>
<td>total dissolved solids</td>
</tr>
<tr>
<td>THM</td>
<td>trihalomethane</td>
</tr>
<tr>
<td>TID</td>
<td>thermal ionization detector</td>
</tr>
<tr>
<td>UF</td>
<td>uncertainty factor</td>
</tr>
<tr>
<td>UNICEF</td>
<td>United Nations Children’s Fund</td>
</tr>
<tr>
<td>UNSCEAR</td>
<td>United Nations Scientific Committee on the Effects of Atomic Radiation</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>US EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>UVPAD</td>
<td>ultraviolet photodiode array detector</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WHOPES</td>
<td>World Health Organization Pesticide Evaluation Scheme</td>
</tr>
<tr>
<td>WQT</td>
<td>water quality target</td>
</tr>
<tr>
<td>WSP</td>
<td>water safety plan</td>
</tr>
<tr>
<td>YLD</td>
<td>years of healthy life lost in states of less than full health, i.e., years lived with a disability</td>
</tr>
<tr>
<td>YLL</td>
<td>years of life lost by premature mortality</td>
</tr>
</tbody>
</table>