Household Water Treatment and Safe Storage: Research and Implementation

Thomas Clasen

London School of Hygiene & Tropical Medicine
Keppel St., London WC1E 7HT, United Kingdom

thomas.clasen@lshtm.ac.uk

WWF, Mexico City
19 March 2006
HWTS Research Agenda

- Technology development and lab verification
- Field verification of performance
- Health impact trials
- Systematic reviews of health impact
- Economic evaluations
- Exploring effective communication strategies
- Evaluation of HWTS in emergencies
- Low-cost diagnostics
- Exploring alternative models of dissemination
- Scaling up (demand and supply)
- Ensuring sustainability and long-term use
- Technology verification and standards
Research in support of **Policy**

Objectives
- Advance major goals (e.g., MDGs)
- Secure support of WHO, MoHs, public health community
- Procure government support and resources among competing priorities
- Attract donor funding
- Develop rigorous evidence base
- Establish risk-based guidelines for water quality
- Develop product standards

Examples
- Comprehensive lab testing for efficacy and safety
- Randomized controlled health outcome trials
- Systematic reviews
- Cost-benefit analyses
- Cost-effectiveness analyses
- Assessments of HWTS in emergency response
- Models demonstrating scalability and sustainability
- Technology verification protocols
Research in support of Practice

Objectives

- Advance NGO goals (e.g., communities served, systems installed, products sold)
- Improve efficiency of delivering services/coverage
- **Stress incremental improvement over state-of-the-art technology**
- Enhance acceptability and support by target population
- Maximize domestic content and local participation
- Ensure sustainability
- Show demonstrable progress to donors and attract additional funding

Examples

- Adapt existing technologies already shown to be safe and effective
- Develop effective training programmes/materials
- Assess whether local products can achieve satisfactory performance
- Develop effective programmatic communications and campaigns
- Evaluate distribution models that build on existing communities and networks
- Provide practical tools to enhance uptake and long-term use
- Design simple methods for monitoring and evaluation of programmes
Research → Implementation

Policy and Practice

Theme Papers

Bridging the implementation gap between knowledge and action for health
Andy Haines,¹ Shyama Kuruvilla,² & Matthias Borchert³

From research to action — a bridge to be crossed
Bjorn Melgaard¹

Editorials

From Bangkok to Mexico: towards a framework for turning knowledge into action to improve health systems
Tikki Pang,¹ Ariel Pablos-Mendez,² & Carel Ijselmuiden³

NEW Getting Research into Policy and Practice (GRIPP)

WWW.jsiuk-gripp-resources.net

In collaboration with JSI(UK), Population Council, and Safe Passages to Adulthood. Opportunities and Choices programme launched the GRIPP website at DFID in November 2002. This web site provides support to researchers in getting their work into policy and practice.
Enhancing Collaboration between Research and Practice

Benefits:
- Practical Problem
- Suitable Setting
- Field Staff for sampling/surveillance
- Other Logistics
- Students (e.g., Oxfam)
- Cross-fertilization
- Low Marginal Cost
- Existing Funding

Obstacles
- Administrative Burden
- Cost
- Transparency
- Timing

Examples:
- EAWAG/SANDEC (multiple)
- Oxfam (Sierra Leone, Colombia, Dominican Republic, Haiti)
- P&G (multiple)
- JHC-CDCA (Nicaragua)
- EPNO-MIT (Nepal)
- FFH—(Bolivia)
- CARE (Kenya, Indonesia)
- PSI (Kenya, Tanzania)
- ICRC (Kenya)
- IDE (Cambodia, Vietnam)
- Unilever (India)
Additional Resources

- International Network to Promote Household Water Treatment and Safe Storage (http://www.who.int/household_water/en/)
- WELL Resource Centre (www.lboro.ac.uk/well/)
 - [Technical Enquiry Service](http://www.lboro.ac.uk/well/) - up to one day of free advice
 - [Document Service](http://www.lboro.ac.uk/well/) - free of charge hard copy publications
 - Well Factsheets—practical, brief summaries
- Research Institutions (MIT, UNC, CDC, Johns Hopkins, LSHTM, Cranfield, WEDC, AIT, Pretoria)
- [Dan Campbell Listserve (HIP)](http://www.lboro.ac.uk/well/)
- Practical Publications (e.g., Waterlines)
- Conferences/Associations
 - InterAgency Committee on Emergency WatSan (January)
 - WWF/WWC
 - IWA Health-Related Water Microbiology Committee
Oxfam Pilot Programme—Colombia

- Six-month (March-September 2004) randomized controlled trial of a pilot program using locally-fabricated ceramic water filter using Katadyn® candles
- Following a baseline survey to confirm no differences between persons in intervention (n=415) and control (n=265) groups, filters were randomly allocated to half of the households (n=130) in each of three communities
- Follow-up at monthly intervals to assess water quality and diarrhoea prevalence
Mean Thermotolerant (Faecal) Coliform (and 95% CI) per 100ml

<table>
<thead>
<tr>
<th>Site</th>
<th>Control</th>
<th>Intervention</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curvarado</td>
<td>154 (124, 185)</td>
<td>50 (30, 71)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Dabeiba</td>
<td>220 (193, 247)</td>
<td>46 (27, 65)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Cartagenita</td>
<td>72 (61, 83)</td>
<td>0</td>
<td><0.0001</td>
</tr>
<tr>
<td>Overall</td>
<td>151 (135, 166)</td>
<td>37 (26, 48)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Filters reduced the level of faecal bacteria at all sites, with an overall reduction in arithmetic mean TTC/100ml of 75.3%. However, only in Cartagenita did the filters eliminate all TTC in product water.
Health Impact

<table>
<thead>
<tr>
<th>Site</th>
<th>All ages</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>95% CI</td>
<td>P-value</td>
<td>OR</td>
<td>95% CI</td>
<td>P-value</td>
<td></td>
</tr>
<tr>
<td>Curvarado</td>
<td>0.87</td>
<td>0.31, 2.39</td>
<td>0.781</td>
<td>1.37</td>
<td>0.21, 8.87</td>
<td>0.743</td>
<td></td>
</tr>
<tr>
<td>Dabeida</td>
<td>0.49</td>
<td>0.21, 1.13</td>
<td>0.095</td>
<td>0.60</td>
<td>0.24, 1.56</td>
<td>0.297</td>
<td></td>
</tr>
<tr>
<td>Cartagenita</td>
<td>0.21</td>
<td>0.10, 0.41</td>
<td><0.001</td>
<td>0.19</td>
<td>0.06, 0.58</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>0.40</td>
<td>0.25, 0.63</td>
<td><0.001</td>
<td>0.40</td>
<td>0.21, 0.76</td>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>

Overall, prevalence of diarrhoea was 60% less among households using filters than control households (OR = 0.40, 95% CI = 0.25, 0.63, P < 0.0001). However, the microbiological performance and protective effect of the filters was not uniform throughout the study communities, and corresponded with microbial performance.